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Abstract

Threshold ECDSA (Elliptic Curve Digital Signature Algorithm) has garnered significant
attention from both industry and research, primarily due to its blockchain applications, especially
in the context of threshold wallets. Existing solutions often assume that the client is either an
integral part of the signers, as evident in self-custodial or non-custodial wallets, or that they
entirely delegate the signing procedure to an external network, as observed in custodial wallets.
The former allows clients to defend against collusion attacks from other signers, while the latter
enables more efficient online phases through the use of preprocessing material. In this report, we
explore the development of a threshold signature scheme that keeps some of the key benefits from
both custodial and non-custodial settings. Specifically, we present a threshold ECDSA signature
scheme in the client-server model that combines the optimal online round complexity from the
custodial setting with resilience against collusion among all signer nodes during the online phase,
as observed in non-custodial wallets. The scheme is also secure against user impersonation
attacks, a key concern with custodial wallets.

1 Introduction

Threshold cryptography distributes information and responsibility among multiple parties [5, 12, 25],
enhancing security and resilience. A prominent application of this approach is threshold signature
schemes (TSS), where a set of n parties possessing shares of the signing key can sign a message M
only if at least t parties agree to sign [11]. By decentralizing the signing process through a network
of diverse entities, this strategy mitigates the risk of single points of failure. Recently, (TSS) have
been adopted within the Web3 ecosystem [19, 9] as a measure to enhance security and mitigate
inherent risks associated with client-driven key management. Precisely, TSS schemes allow wallets
to operate within three distinct scenarios: custodial, wherein all signing key shares are distributed
among a designated set of signing parties; self-custodial, whereby the client exclusively manages all
cryptographic keys; and non-custodial, involving the distribution of signing key shares between the
client and designated signing parties [9].

Custodial wallets present operational advantages over non-custodial counterparts: they delegate
key management responsibilities to external service providers staffed by security experts, thereby
reducing the risk of theft or loss. Additionally, from an efficiency standpoint, custodial wallets
do not necessitate client involvement in the signing process, allowing preprocessing tasks to be
efficiently handled by the network before signing. However, custodial wallets exhibit vulnerability
to full collusion among signers, whether for signing new messages or disclosing shared secret keys.
This vulnerability is addressed by non-custodial wallets, where the client actively participates in
the signing process. Moreover, entrusting key management responsibilities in custodial setups
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introduces the risk of user impersonation attacks, wherein an attacker seizes control of the user’s
wallet by posing as the legitimate user. Consequently, there exists a desire to combine the benefits of
both custodial and non-custodial solutions. While TSS protocols maintain transparency regarding
the roles of clients and signing parties, enabling execution in both custodial and non-custodial
settings, they lack the flexibility for threshold wallets to optimize advantages from both approaches.
Therefore, one might wonder:

Is it possible to develop a TSS protocol that keeps some of the
key benefits of both custodial and non-custodial settings?

In this report, we present a threshold ECDSA signature scheme in the client-server model [21]
that keeps the operational benefits of a custodial setting while eliminating impersonation attacks and
approximating its trust assumptions to the unforgeability robustness of the non-custodial setting.
This is realized through the encryption of precomputed material linked to the secret key and a
white-box application of a secure multiparty computation (MPC) protocol [27], recently introduced
and instantiated using additive shares.

Related work. Some signature schemes, such as BLS and Schnorr’s scheme, can be easily adapted
to the threshold setting [4]. However, the elliptic curve digital signature algorithm (ECDSA) has
received more research attention due to the challenges of executing non-linear operations over
shares. Recent papers [20, 15, 14, 6, 8, 13] mainly focus on dishonest majority scenarios with
statically corrupted parties, which is suitable enough for practical deployment as highlighted in
[1]. Nonetheless, these approaches often rely on additional assumptions, such as strong RSA [14,
6] and utilize complex building blocks such as Multiplicative-to-Additive (MtA) shares [14, 6, 13].
These factors increase the complexity of deployments, thereby making them vulnerable to potential
attacks [2, 26, 24].

Optimization efforts primarily target reducing communication rounds in TSS protocols, which
heavily rely on network latency [1]. The most efficient protocols, such as [6, 8], operate in a
preprocessing setup, where a presignature is generated, enabling a non-interactive online phase.
However, these protocols do not address a scenario where the client does not own a share of
the signing key while having the ability to prevent signers from signing independently under full
collusion.

Our contribution. We introduce a threshold ECDSA scheme in the dishonest majority setting
with abort within the client-server model, creating sufficient preprocessing material to facilitate an
optimal online phase — comprising one round for the client to transmit a message to the servers and
another round to receive the result. Our protocol is unforgeable with n− 1 corruptions and with
full collusion among signers during the client dependent phase of the distributed signing protocol.
Furthermore, it is secure against user impersonation attacks.

High-level picture of the scheme. The proposed scheme is tailored for deployment in a network
architecture where individual clients are connected with a group of n signers. In essence, the network
holds encrypted shares related to the signing secret key, while the clients possess the secret key of the
corresponding encryption scheme. This configuration empowers the client to prevent unauthorized
attempts by the signers to forge signatures.

We follow the MPC protocol outlined in [27]. This protocol calculates multivariate polynomials
without interaction during the computation phase. Specifically, the protocol operates on elements
of the form ⟨x⟩λ := x · h−λ where λ is secret shared between the parties. Within the context of
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this report, we refer to ⟨x⟩λ as a masked value of x with respect to the masking exponent λ using
public generator h. It is worth noting that this construction essentially constitutes a multiplicative
one-time pad in the multiplicative group Z∗

q , for prime q.
The signature scheme comprises two protocols: a distributed key generation (DKG) protocol,

denoted as πDKG, and a threshold signing protocol, denoted as πSign. To ensure compatibility with
the underlying MPC protocol [27], the DKG protocol outputs an encrypted signing secret key share
tuple (⟨x⟩λ, epk,λ) alongside the conventional signing public key y = x ·G, where G represents an
elliptic curve generator. Here, epk,λ := Encpk(JλK), with J·K denoting the additive secret sharing
scheme in Zq−1 and Encpk representing an additively homomorphic scheme under the public key
pk and secret key sk owned by the client. The generation of the random masked value ⟨x⟩λ and
the corresponding public key y is accomplished using standard MPC primitives combined with
preprocessing material from the MPC protocol [27]. This involves the reconstruction of additive
shares both in the exponent of h ∈ Z∗

q and in the coefficient of a chosen elliptic curve generator G.
The threshold signing protocol, denoted as πSign, is designed to compute the ECDSA signature

equation. This equation takes the form of a polynomial (s = k−1 ·m+ k−1 ·x · r), where all elements
are in the field Zq. The signing protocol is structured into three distinct phases:

1. Signers preprocessing phase: This phase involves computing preprocessing material without
requiring any client intervention. An interesting optimization in this phase is the local
computation of inversions, utilizing the property ⟨x⟩−1

λ = ⟨x−1⟩−λ. This phase assumes at
least one signer is honest.

2. Client preprocessing phase: This phase consists of a single round where signers reveal two
masking exponents to the client. This phase tolerates full signer corruption.

3. Online phase: This phase encompasses two rounds. In the first round, the client sends the
message to be signed, and in the second round, the client receives the result from the signers.
It is noteworthy that during the online phase, no communication occurs among the signers,
resembling the evaluation phase of the MPC protocol as detailed in [27, Section 2.2]. This
phase also tolerates full signer corruption.

2 Technical overview

2.1 ECDSA Signing

We recall that ECDSA is parametrized by an elliptic curve over a finite field and defined by a triple
(G, G, q), where G is an additive subgroup of points in the curve with prime order q and generator
G. Given message M , secret key x and random nonce k in Z∗

q , the ECDSA signature is a pair
(s, r) ∈ Z∗

q where s = k−1 · (H(M) + x · r), for a cryptographic hash function H. Here, r is the
x-coordinate of the point k ·G, i.e. (r, ) := k ·G.

2.2 Secret sharing

A (t, n)−threshold secret sharing scheme is a pair of algorithms (Share,Reconstruct). The Share
algorithm splits a secret value into n shares and the Reconstruct algorithm recovers the initial secret
value with only t+ 1 shares.

We employ in our threshold signature construction the additive secret sharing scheme. In this
scheme, a number x ∈ Zq is shared among n parties Pi by sending random xi ∈ Zq to Pi such that
x =

∑n
i xi mod q. The reconstruction is achieved by having all parties send their share xi to each
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other. Throughout this report, we denote by [x] := {[x]1, . . . , [x]n} additive shares in Zq and JxK
additive shares in Zq−1.

2.3 Additively Homomorphic Encryption

Our protocol uses an encryption scheme with the following two homomorphic properties:

• A pair of encrypted ciphertexts can be added.

• An encrypted ciphertext can be multiplied by a plaintext.

Informally, an additively homorphic encryption sheme consists of three algorithms

E = (KeyGen,Encpk,Decsk),

where KeyGen generates the public and private key pair (sk, pk) and Encpk and Decpk are the
encryption and decryption algorithms, respectively. The first homomorphic property guarantees
that there exists an efficient operation ⊞ such that a+ b = Decsk (Encpk(a)⊞ Encpk(b)), the second
that there exists an efficient operation � such that a · b = Decsk (Encpk(a) � b). Standard examples
of such encryption schemes include those of Paillier [22] and Castagnos-Laguillaumie [7].

2.4 The Underlying MPC Protocol

We make use of the MPC protocol introduced in [27] instantiated with an additive secret share
scheme to obtain a non-interactive online phase. The work [27] also introduces the concept of
masked factors as follows. A masked factor ⟨x⟩λ hiding a non-zero secret x ∈ Z∗

q with independent
uniformly random mask exponent λ ∈ Zq−1 is given as

⟨x⟩λ = x · h−λ ∈ Z∗
q ,

where h is a public generator in Z∗
q . We refer to the element h−λ as the multiplicative mask. To

simplify notation, we often use ⟨x⟩ when λ is implicit. Observe that, in the description of our
protocol below, we often include in the random mask exponent, λx, its corresponding secret variable
label, x. For readability purposes, we might use one or the other.

Protocol. For a description of the protocol we refer to [27, Section 2]. It aims at evaluating a
multivariate polynomial of the form:

z =
A∑

a=1

Ma∏
m=1

xa,m,

where xa,m are secrets owned by input parties, a stands for the terms being added and m for the
factors being multiplied in one term. The protocol is divided in two phases: a preprocessing phase,
(FPREPROC, [27, Figure 1]), that generates shares {[hγa ]}, {Jλa,mK} such that

JγaK =
Ma∑
m=1

Jλa,mK, (1)

and a computation phase (π, [27, Figure 2]), that generates the masked factors with λa,m as mask
exponents, i.e. ⟨xa,m⟩λa,m and that computes the polynomial in secret shared form using the
expression:

[z] =

A∑
a=1

[hγa ]

M∏
m=1

⟨xa,m⟩λa,m .

4



The above description assumes the masked factors are computed according to the target
polynomial. However, it is possible to modify the aforementioned protocol to address scenarios
where certain masked factors are generated independently prior to the MPC protocol execution. In
such cases, the associated masked exponents deviate from the constraints set by Expression (1).
This deviation occurs notably in the ECDSA signing equation, where the private signing key x
undergoes masking during the distributed key generation protocol. To adapt the MPC protocol
from [27] to our specific use case, we introduce an additional exponent, denoted as λgap, designed to
compensate for the gap in Expression (1). We refer to Section 4.3 for further details.

2.5 Threshold Signature

A threshold signature scheme consists of three efficient algorithms (DKG,Sign,Ver) defined as follows.
DKG is a distributed key generation protocol which generates the public signing key alongside the
signers’ shares of the private signing key. Sign is a signing protocol which receives as inputs the
message M to be signed alongside the private key shares of each signer. It outputs a valid signature
σ which, in turn, can be verified by the Ver algorithm in the same way as the base signature scheme.
The proposed scheme follows the informal definition given above adapted to the client-server model.

3 Model and Definitions

Network setup. We assume the network is composed by a client and n signers. The signers also
serve as a database storing both encrypted shares of data associated with the secret key and the
secret key masked factor itself. We assume the client and the signers are interconnected through an
authenticated and synchronous broadcast mechanism.

Threat model. We operate within the adversarial context of most prior works [20, 15, 14, 6, 8,
13]. We assume static corruptions and consider both semi-honest (in the key generation and key
agreement protocols) and malicious (in the remaining protocol) adversaries in the dishonest majority
setting with abort.

We extend the security model of custodial wallets by allowing for full corruption of signers
during the time when the client is online. This includes both, the client preprocessing and the online
phases in the threshold signing protocol.

What could go wrong? Threshold signature schemes (TSS) aim to eliminate single points of
failure through their distributed nature. Custodial settings assume there is at least one honest signer
during the whole process. Our scheme hardens this through the use of secret key shares, allowing for
full corruption of signers during the time the client is online. Moreover, the unforgeability security
feature is not compromised against user impersonation attacks on the network as the attacker is
still lacking the secret key of the encryption method used to decipher the shares. Next, we define
TSS in the client-server model.

Definition 3.1 (Threshold signature scheme in the client-server model). A (t, n)−threshold signature
scheme in the client-server model allows a client and a set of n signers equipped with an encryption
scheme E ′ to sign a message M defined by the client, such that any group of t+1 signers along with
the client can jointly generate a signature, whereas groups lacking the client or having t or fewer
signers cannot. The secret key sk of E ′ is owned by the client. More specifically, it consists of the
following three protocols:
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• DKG (distributed key generation protocol): every party receives the signing public key y and,
additionally, the signers receive encrypted shares of the signing secret key x.

• SignS (preprocessing signing protocol): receives the encrypted shares of the signing secret key
x from each signer. It outputs a set of preprocessing material.

• SignC (signing protocol): receives the message M to be signed from the client, the encrypted
shares of the signing secret key x and the preprocessing material from each signer. It outputs
a signature σ.

Signature schemes are defined to be secure under the standard notion of existential unforgeability
against chosen message attacks (EU-CMA) introduced in [17]. The generalization of this security
notion to the threshold setting was presented for the first time in [16]. We present below an adapted
definition of the unforgeability presented in [16] to the client-server model.

Definition 3.2 (Unforgeable threshold signature scheme in the client-server model). Consider a
malicious adversary A who corrupts at most t signers during DKG and SignS protocol executions
and corrupts all n signers during SignC protocol execution. We say that a (t, n)−threshold signature
scheme in the client-server model (DKG,SignS,SignC) is unforgeable, if no malicious adversary of
corruption type A can produce, with non-negligible probability in the security parameter, the signature
on any new message, given the view of the protocol DKG and of the protocols SignS and SignC on
input messages m1, . . . ,mk which the adversary adaptively chose as well as signatures on those
messages.

4 Threshold ECDSA

In this section, we introduce the fundamental building blocks of our threshold ECDSA scheme,
which encompass the distributed key generation (DKG) and signing (Sign) protocols.

Standard primitives. In our approach, we employ the protocol πPowOpen over additive shares JxK,
which opens the value gx to all parties. This is achieved by having all parties broadcasting their
component, gJxKi , and multiplying all components together. We also use the elliptic curve version
of the protocol for shares in Zq, denoted by πECPowOpen. Similarly, given additive shares JxK and
public generator G, all parties broadcast their component, JxKi ·G, and add all components together.
We incorporate the additive secret sharing version of the joint random generation of secret values,
denoted as πRSS [16, 23].

4.1 Key Agreement

We present a semi-honest version of the key agreement πKeyAgreement protocol (Figure 1) which
preserves privacy against malicious adversaries but not correctness. A maliciously secure version can,
in principle, be realized using techniques from [18]. It uses a pair of preprocessing material (JλK, [hλ])
to compute a pair (⟨x⟩λ, y), where ⟨x⟩λ is the masked signing secret and y the corresponding public
key. Note that hλ is the inverted mask of x which is hidden under the value y′ and x is defined
as x = hr, for some random r ∈ Zp−1. This protocol plays a pivotal role in both DKG and Sign
protocols. Notice that this protocol could be replaced by a centralized version where the client
locally generates the pair of signing keys and distributes the encrypted shares from the generated
private key to the network nodes.
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Random masked factor and public elliptic point representation, πKeyAgreement.

(⟨x⟩λ, y)← πKeyAgreement(JλK, [hλ])

1. Run JrK← πRSS.

2. Run in parallel ⟨x⟩λ := hr · h−λ ← πPowOpen(h, JrK− JλK) and y′ := hλ ·G← πECPowOpen(G, [hλ]).

3. Locally compute ⟨x⟩λ · y′ = x ·G =: y.

Signers’ output: (⟨x⟩λ, y).

Figure 1: Protocol to generate a random masked factor and the corresponding public elliptic point.

Security. We focus on semi-honest adversaries. Standard protocols πRSS (see for instance [3]),
πPowOpen and πECPowOpen [10] are secure in this setup by standard simulator arguments. We show next
that ⟨x⟩ and y′ only leak y. Indeed, y′ hides λ by the discrete logarithm (DL) assumption. Thus,
⟨x⟩ = x · h−λ masks x = hr under this assumption. The correctness of step 3 is straightforward.
Finally, since r is random, so is the secret key x = hr.

4.2 Key Generation

The distributed key generation protocol, denoted as πDKG and presented in Figure 2, is mostly based
on the key agreement protocol πKeyAgreement introduced in Figure 1. The protocol πDKG outputs
encrypted signing secret key shares of the form (⟨x⟩λ, epk,λ,i). Here, ⟨x⟩λ is the masked factor
of the secret signing key x and epk,λ,i := Encpk(JλKi) is the encryption of signer i’s share of the
corresponding masked exponent λ. We can think of xi = (⟨x⟩λ, JλKi) as a share of x and the
operation (⟨x⟩λ, JλKi) 7→ (⟨x⟩λ,Encpk(JλKi)) as the encryption method from the scheme E ′. This fits
the definition of DKG protocol given before for a threshold signature scheme in the client-server
model. We denote by (⟨x⟩λ, epk,λ) the set of all encrypted shares {xi} under E ′.

The encryption of the shares is produced as follows. After computing the masked factor of the
secret key, the signers encrypt their corresponding mask exponent share, JλxK, and subsequently
erase the pair (JλxK, gλx). The encryption scheme must be additively homomorphic for seamless
integration with the signing protocol, eliminating the need to decrypt shares during the process.
We assume the corresponding key pair was previously generated and distributed accordingly. Its
private key, denoted as sk, is securely stored on the client’s side, while the corresponding public key,
labeled as pk, is disseminated to the entire network.

Performance. The round complexity of πDKG protocol aligns with that of the key agreement
protocol. The semi-honest version of the protocol involves two rounds of communication and
requires one correlation pair.

Security. We present a heuristic argument regarding the security of the πDKG protocol. We focus on
the semi-honest setting. In accordance with Definition 3.2, we contemplate an adversary A capable
of corrupting all but one (precisely n− 1) signer. The security of πDKG is based on the security of
the key agreement protocol and the fact that all parties delete the original pair (JλK, [hλ]).

Note that signers lack the ability to reconstruct the private signing key x in case all encrypted
signing secret key share tuples ((⟨x⟩λ, epk,λ) , y) are leaked. The security of ⟨x⟩λ relies on the
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Distributed Key Generation, πDKG.

((⟨x⟩λ, epk,λ) , y)← πDKG()

Parameters. (sk, pk): client’s secret and public key.

1. Retrieve a pair (JλK, [hλ]) from preprocessed material.

2. Run (⟨x⟩λ, y)← πKeyAgreement(JλK, [hλ]). Set signing public key as y.

3. Locally encypt epk,λ := Encpk(JλK) and delete the original pair (JλK, [hλ]).

Signers’ output: ((⟨x⟩λ, epk,λ) , y).

Figure 2: Distributed key generation protocol.

protective mask h−λ, and λ enjoys security through a homomorphic encryption scheme wherein
only the client possesses the corresponding secret key sk. Leveraging the homomorphic property of
the encryption scheme, the client together with the signers retain the capability to sign messages
without the necessity of revealing the encrypted shares.

4.3 Signature Generation

The threshold signing phase can be divided into three distinct phases: signers preprocessing, client
preprocessing, and the online phase. The initial phase constitutes the SignS protocol, while the final
two phases together form the SignC protocol within the client-server model definition of threshold
signature schemes.

Preliminaries. In the context of ECDSA, the polynomial is given by the expression of the signature
term

s = k−1 ·m+ k−1 · x · r,

where m = H(M) is the hash of the message M . For a threshold scheme, one must hide x and k.
We instantiate the underlying MPC protocol [27] and apply it to the ECDSA equation above by
adding a mask h−λgap as follows:

[s · h−λgap ] = [gγ1 ] · ⟨k−1⟩−λk
· ⟨m⟩λm+λgap + [gγ2 ] · ⟨k−1⟩−λk

· r · ⟨x⟩λx ,

where s · h−λgap = ⟨s⟩λgap is a masked version of s and Expression 1 translates to

−JλgapK = Jγ1K + JλkK− Jλm + λgapK
−JλgapK = Jγ2K + JλkK− JλxK.

Notice that the first equation can be rewritten as JλmK = Jγ1K + JλkK.

Protocol. The threshold signing protocol is presented in Figure 3. The πSign protocol begins with
the signers preprocessing phase, which aligns with the SignS protocol from Definition 3.1. In this
phase, signers use the encrypted shares tuple (⟨x⟩λ, epk,λ,i) as their input. They start by creating a
masked nonce ⟨k⟩ and the corresponding public key k ·G through a key agreement protocol. After
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Threshold signing, πSign.

σM = (s, r)← πSign(M, (⟨x⟩, epk,λx))

Parameters. (sk, pk): client’s secret and public key.

Signers preprocessing

1. Signers retrieve three pairs from preprocessed material, i.e. (JλkK, [hλk ]), (Jγ1K, [hγ1 ]) and
(Jγ2K, [hγ2 ]).

2. Signers generate nonce and the corresponding public value:

(⟨k⟩, k ·G)← πKeyAgreement(JλkK, [hλk ]).

3. Signers locally:

(a) set (r, ) := k ·G.

(b) compute ⟨k−1⟩ = ⟨k⟩−1 and set Jλk−1K := −JλkK.

4. Signers locally compute encrypted elements:

(a) Encpk(JλmK) := Encpk(Jγ1 − λk−1K).

(b) Encpk(JλgapK) := Encpk(Jλk−1 − γ2K)⊞ Encpk(JλxK).

(c) Encpk([h
γ1 ]) and Encpk([h

γ2 ]).

5. Delete all original pairs (JλkK, [hλk ]), (Jγ1K, [hγ1 ]) and (Jγ2K, [hγ2 ]) and also delete shares Jλk−1K.

Client preprocessing

6. Signers send Encpk(JλgapK) and Encpk(JλmK) to the client.

7. The client uses sk to decrypt both Encpk(JλgapK) and Encpk(JλmK). Then, the client reconstructs
them and saves λm + λgap.

Online

8. The client computes m = H(M) and masks it: ⟨m⟩λm+λgap = m · h−(λm+λgap) . Sends ⟨m⟩ to
all signers.

9. Each signer locally computes and sends to the client:

Encpk([s · h−λgap ]) = Encpk([h
γ1 ]) � (⟨k−1⟩ · ⟨m⟩)⊞ Encpk([h

γ2 ]) � (⟨k−1⟩ · r · ⟨x⟩) (2)

10. The client uses sk to decrypt the resulting shares, reconstructs the masked signature, multiplies
the result by hλgap and verifies the signature is correct. In case of failure, it aborts.

Signers’ output: ⊥.
Client’s output: σM = (s, r).

Figure 3: Protocol to sign the client’s message in a threshold setting.
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this initial step, all further actions can be done locally. In step 4, signers encrypt the relevant shares
information to ensure resistance against full corruption in the following two phases. The encryption
scheme’s homomorphic property allows for their effective use in subsequent stages.

Both the client preprocessing and the online phases constitutes the SignS protocol from Defini-
tion 3.1. Steps 6 and 7 allow the client to compute the mask exponent λm + λgap of the message m.
This is introduced for correctness as the signers together are computing encrypted shares of the
masked signature.

Performance. The scheme presented uses the MPC protocol in [27] to compute the inverse
and multiplication of secrets without communication. These two steps usually make up the most
round intensive steps in standard protocols. By separating the work between signers and client
preprocessing, the protocol is set up to go through 3 rounds. By combining all the preprocessing
steps, we can take it a step further and carry out step 6 at the same time as step 2. It is important
to highlight that the elements needed for both steps do not rely on each other. This optimization
allows for a 2-round preprocessing protocol, plus the rounds required to generate three preprocessed
pairs. Additionally, notice that steps 4(a) and 4(b) can be merged into a single element, which not
only saves computational resources but also reduces the bandwidth needed in step 6. We chose to
present it this way for the sake of clarity and readability.

Correctness. The correctness follows from: 1) the linear properties of the additively homomorphic
encryption scheme, 2) the fact that for a share [a] and masked factor ⟨b⟩, [a] · ⟨b⟩ = [a · ⟨b⟩] as ⟨b⟩
is a public value owned by all signers, and 3) the property ⟨k⟩−1

λk
= ⟨k−1⟩−λk

= ⟨k−1⟩λk−1 , which
implies λk−1 := −λk. Thus, we have:

r.h.s = Encpk([h
γ1 ]) � (⟨k−1⟩ · ⟨m⟩)⊞ Encpk([h

γ2 ]) � (⟨k−1⟩ · r · ⟨x⟩)
= Encpk([h

γ1 · k−1 · h−λk−1 ·m · h−λm · h−λgap + hγ2 · k−1 · h−λk−1 · r · x · h−λx ])

= Encpk([k
−1 ·m · h−λgap + k−1 · r · x · h−λgap ]) = Encpk([s · h−λgap ]).

Security. Once more, we offer a heuristic argument concerning the security of the πSign protocol,
with a detailed security analysis reserved for a subsequent version. In accordance with Definition 3.2,
it becomes imperative to contemplate two distinct scenarios: firstly, the corruption of at most n− 1
signers over the entire protocol; secondly, the compromise of at most n− 1 signers during the signers’
preprocessing phase, coupled with complete corruption occurring during the client preprocessing
and online phases.

Firstly, we examine a scenario wherein the adversary corrupts n − 1 signers throughout the
entire protocol execution. The signers’ preprocessing phase only involves communication during
the key agreement protocol execution. It is noteworthy that the security of step 1 comes from the
preprocessing phase of the underlying MPC protocol, while step 2 derives its security from the key
agreement protocol. The key agreement protocol, denoted as πKeyAgreement, achieves semi-honest
security, preserving privacy against malicious adversaries but without ensuring correctness. We
observe that, in the context of malicious security with abort, it suffices to validate the resulting
signature’s correctness at the client’s end (Step 13) [10].

Moreover, steps 4 and 5 exclusively involve local operations on shares, maintaining resilience
against information disclosure to adversaries due to the imposed threshold limit of n − 1. Steps
6 and 7 provide the client with the mask of the message digest m. It is crucial to highlight that
exposing both λgap and λm to the client does not leak information about JλxK and hence about the
private key x, as γ1 and γ2 mask λx, as observed in the expression λgap = γ1 − λm − γ2 + λx.
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Secondly, the unforgeability of the signature comes from the security of the underlying MPC
protocol applied in Expression 2. The n− 1 signers only have masked elements (⟨k−1⟩, ⟨m⟩, ⟨x⟩) to
either recover x or forge a signature (i.e., compute and reveal the signature SoP) under a different
m. This feat remains unattainable without divulging the term masks [hγ1 ] and [hγ2 ].

Now, we comment on the security of the scheme even if the adversary is able to corrupt all
signers during the client dependent phases (client preprocessing and online). By virtue of encryption
and the existence of one honest party up to step 5, we can ensure there is at least one plain-text
share missing for every sharing Jλk−1K, JλmK, JλgapK, [hγ1 ] and [hγ2 ]. This prevents the adversary
from:

• reconstructing λgap, λk−1 and γ1, which from the linear relation 4(b) allows the adversary to
recover λx and, subsequently, the signing secret key x.

• unmasking k−1, which makes the security of the signing secret key x dependent on the security
of the signature element s.

• computing and opening [k−1 · m] = [gγ1 ] · ⟨k−1⟩−λk
· ⟨m⟩λm+λgap and [k−1 · r · x] = [gγ2 ] ·

⟨k−1⟩−λk
· r · ⟨x⟩λx . This makes the security of the signing secret key x dependent on the

security of the message digest m.

After step 5, and even with full node collusion, we note that the signers are not able to forge a
signature due to their inability to decrypt in step 7 and also to decrypt the signature in step 12. As
a final remark, the adversary is able to deviate from the protocol in step 6. This would allow them
to coordinate and send an encryption of elements at their choice. However, this would only provide
them with the message digest and they would not even be able to correctly compute Expression 2.

As previously noted, impersonation attacks represent a significant vulnerability within the
custodial setting, thereby shifting the security onus onto the authentication mechanism employed
by the network. We observe that this scheme is robust against adversaries attempting to bypass the
authentication mechanism and successfully impersonate a client. Notably, a fraudulent client would
find itself incapable of executing both steps 7 and 12 due to the absence of the required decryption
secret key, x.

5 Conclusion

In the context of the dishonest majority setting, we have presented a threshold ECDSA scheme
within the client-server model. Our scheme incorporates an efficient preprocessing stage that ensures
an optimal online phase involving a single round for the client to transmit a message to the signers
and another round to receive the result. Notably, our protocol maintains its unforgeability even
in the presence of n− 1 corruptions and full collusion among signers during the client-dependent
phase of the distributed signing protocol. Additionally, it demonstrates resilience against user
impersonation attacks, enhancing the overall security of the proposed scheme.

References

[1] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A Survey of ECDSA
Threshold Signing. Cryptology ePrint Archive, Paper 2020/1390. https://eprint.iacr.org/
2020/1390. 2020.

[2] Jean-Philippe Aumasson and Omer Shlomovits. Attacking Threshold Wallets. Cryptology
ePrint Archive, Paper 2020/1052. https://eprint.iacr.org/2020/1052. 2020.

11

https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2020/1052


[3] J. Bar-Ilan and D. Beaver. “Non-Cryptographic Fault-Tolerant Computing in Constant Number
of Rounds of Interaction”. In: Proceedings of the Eighth Annual ACM Symposium on Principles
of Distributed Computing. PODC ’89. Edmonton, Alberta, Canada: Association for Computing
Machinery, 1989, pp. 201–209. isbn: 0897913264.

[4] Alexandra Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme”. In: Public Key Cryptography — PKC
2003. Springer Berlin Heidelberg, Dec. 2002, pp. 31–46.
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