Agents Have Eaten the \World:

How Nillion Ca

Help Secure
an Agentic o

’

®

nillion

INTRODUCTION

FRAMEWORK: INTRODUCING AGENT SPECIALISATION AND ENFORCEMENT

5 AGENT SPECIALISATION

5 MODULARISATION

5 COMMUNICATION

5 AGENT ENFORCEMENT

NILLION’S ROLE IN SECURING AN AGENTIC WORLD

5 AGENT SPECIALISATION

5 MODULARISATION

5 COMMUNICATION

5 AGENT ENFORCEMENT

CONCLUSION

nillion

Introduction

Agents will change Al and the world, reshaping industries and empowering individuals by allowing them to
leverage information, expertise, and time they never had before. These agents could range from personal
assistant agents managing your schedule and paying your bills, to enterprise-grade automated customer
support agents helping customers 24//. But it is not a foregone conclusion that this will play out to benefit
everyone. \\/e have been here before; software did indeed eat the world but also created an ecosystem in
which individuals’ data can be exploited by organisations that have all the leverage without benefiting them
(and sometimes even harming them).

\While there will be many challenges to rolling out ubiquitous Al agents in a way that empowers individuals,
Privacy-Enhancing Technologies (PETs) offer some ways to mitigate the potential downsides by providing
mechanisms that can keep users in control and agents in check. In particular, PETs make it possible to turn
agents into cryptomatons — programs that keep their internal state and computations encrypted so that even
the cloud infrastructure on which they operate cannot see it — that can exist and operate in private while still
being just as useful and capable as they would be otherwise.

The goal of this paper is to formalise how we can minimise the negative impact caused by rogue or malicious
agents and show how Nillion’s technology can aid in realising this goal.

To this end, in this paper, we first introduce a new framework (Agent Specialisation and Agent Enforcement) to
help reason about the security and privacy of agentic systems. Second, we show how we can leverage
Nillion’'s SecretSDKs (most pertinently Secret\/ault) to design general agentic systems (multiple agents
chained together) that satisfy our Agent Specialisation and Enforcement framework.

Framework: Introducing Agent
Specialisation and Enforcement

In this section, we introduce the framework and concepts that will help us reason about the security and
privacy of agentic systems. In particular, we introduce the concepts of Agent Specialisation and Enforcement.

At a high level, our motivation is to leverage Privacy-Enhancing Technologies (PETs) in designing an agent-
centric ecosystem that extends the principle of least privilege beyond its traditional boundaries. \IWhile the
principle can exist independently of PETs, we leverage Nillion's SecretSDKs to establish concrete privacy and
security guarantees that span both individual agent processes and agent-to-agent interactions. Our
framework formalises a key constraint: an agent's capabilities and access levels—along with those of its
underlying infrastructure—should be precisely sufficient to accomplish its goals, nothing more. \IWe argue that
If this is realised, then our goal of minimising the negative impact of rogue, malicious or poorly designed agents
Is achieved.

nillion 2

https://www.forbes.com/sites/salesforce/2024/12/18/why-agents-will-change-everything-you-know-about-ai/
https://a16z.com/why-software-is-eating-the-world/
https://www.wired.com/story/yanis-varoufakis-technofeudalism-interview/
https://0xparc.org/blog/programmable-cryptography-1
https://docs.nillion.com/build/secretVault-secretDataAnalytics/overview
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Agent Specialisation

Intuitively, Agent Specialisation demands that individual agents should be modular and composable units that
have a specific, well-defined, and narrowly scoped purpose across the data they have access to, their scope,
and the other agents they interact with. \IWe split Agent Specialisation into two concepts, Modularisation and

Communication.

MODULARISATION

Agent Modularisation is described by the following
two principles:

1. Data access: The agent’s access to external data
Is restricted to only what is essential for an agent's
specific tasks.

2.Scope Policy: The agent does not stretch
beyond the defined scope set out in the User Agent
Scope Policy which it receives as input from the
user.

Agent Enforcement

COMMUNICATION

Agent Communication is described by the following
two principles:

1. Communication Nletwork: Each agent can only
communicate (output data to) a pre-defined set of
other agents and systems.

2. Communication Policy: The agent follows the
Communication Policy it receives from the end user
when interacting with other agents and systems.
This policy describes how it is allowed to interact.
For example, it outlines the type of information it
may share with different agents.

Agent Specialisation is a great idea in theory, but is not enough on its own. \I/e need a method to hold the
agent accountable for following the policies it must abide by. To this end, we introduce the concept of a
Policing Agent. This is an agent that is paired with every User Agent. In short, the Policing Agent
communicates with the outside world (not the User Agent itself) and the User Agent must convince the
Policing Agent to send the desired output to the intended recipient. \Ne define Agent Enforcement with two

concepts; independence and transparency,.

1. Independence: The Policing Agent operates independently from the User Agent, ensuring unbiased

enforcement of rules.

2. Transparency: All decisions are transparent, with clear logs and rationales for approvals or denials.

Next, we demonstrate how Nlillion’'s SecretSDKs can be used to design agentic systems that satisfy Agent

Specialisation and Enforcement.

nillion

an agentic worid

Nillion’s role in securing

\We now illustrate how Nlillion’'s SecretSDKs can be used to realise Agent Specialisation and Agent
Enforcement in an agentic system. For each concept, we provide an example system architecture that

satisfies its principles.

Agent Specialisation

Agent Specialisation is split into two concepts; Modularisation and Communication. \IWe discuss each in turn

below.

MODULARISATION

The Modularisation concept requires that a User
Agent only has access to a limited dimension of
user data and that it takes, as input, the User Agent
Scope Policy when deciding on actions on behalf of
the user.

Fig 1. illustrates how both of these principles can be

realised using Nlillion’s SecretVVault and SecretTEE
SDKs.

In Fig 1. User Agent A has permissions to access the
user’s health data and the Users Agent Scope
Policy. Both of these are stored inside a Nillion
SecretVault (under MIPC), meaning no single node
In the decentralised network can reconstruct the
stored data. The whole system is run inside a
SecretTEE to further increase the trustworthiness
of the ecosystem.

Age,nt Spe,daliSa‘t?on (Modularisation)

I |
Uploads : : Uploads af{ent
health data 1 End User : Scope policy
]
]
]
_________________________________ b e o e e e e e e e e
'/ -: 0 \\
]
' SecretTEE | | |
!
A Y o Yo l
1 R R
I
: | SecretVault : ! SecretVault .
: I o : Vo : :
1 (R Coaalen L ¥ b
| eoa Health ! | cope cope i)
| I '
: ! ! data ; :\ data ; e : : ' policy ; :\ policy ; 6oe : :
| | — e —_ e)] — e R) ;
I I
: ! Stored under MPC across : ! Stored under MPC across : :
: : decentralised nodes I : decentralised nodes : I
' ‘\ /' ‘\ / :
| e e s e s e i . i o o el i i it it i
i A A I
' ' ' |
: | ; . !
| Has permissions : : Hals pemmissions,
: to access : to access I
' user data ! 1 agent scope :
. I ® l policy |
[i 0 [
I
I | | :
: |
: |
! I
: |
' |
1 l

- e e e e e e e e e e e e e e e o e e o e o e o e o S e O o o o o e e e e e e e o e o o

Fig 1: Agent Specialisation (Modularisation) achieved with Nillion

The Data Access principle is realised as the User Agent is the only entity (other than the end user) that has
permissions to reconstruct and read the user’s health data. The SecretVault guarantees no other agent, nor any

node (or subset of colluding nodes) that form a SecretVault cluster can access this data. The agent has access

to the Agent Scope policy, uploaded by the user, meaning Scope Policy principle is also realised.

nillion

COMMUNICATION

The Communication concept requires that a User Agent has a pre-defined set of other agents and systems it
may interact with, and that the agent takes the User Agent Communication Policy as input to determine how to
Interact with other agents.

Fig 2. illustrates how both of these principles can be realised using Nillion’s Secret\/ault and SecretTEE SDKs
and the idea of a “secure postbox” between any two communicating agents.

Q Q Q Q Q
A?e_n‘t SP@Q\O\I tSO\’t \ON (C OMMUV\\QO@C |OV\)
e (e -
' '
]]
EV\O(Humom ! T u.t t
Uploow(s : : User : cr:mmjni:Zi?on
health data : Inputs "‘ffle t : ! Po[icy
scope Poi y]
]] '
]]
rmmmmeeee ommmen oo doomme oo dommnneeoaes
]
Secret TEE i -
)
U
L4 Y v
——————————————————— /—----------——--—--- e G G
N | » |) ! |
| 1 SecretVault | 1 SecretVault SecretVault i
|)
| | |
| | o= e ———— |) o o | 0T g g o — |
i : Health \: : Health \' : : : Scope \: : Scope \: o : : : Comms \: : Comms \: : : Aﬂe'\t B
: : |\ dotoa) |\ data ; L : i |‘ polict/ | .\ Pohe«/ | oo : 5 |\ Policy Rl Poh Y L : ' Q
) | A |] e M V1P T P |] R | I
| |] I
by Stored under MPC across : ! Stored under MPC across : ! Stored under MPC across : '
decentralised nodes P! decentralised nodes ! : decentralised nodes ! : [O O]
[4 [I
/

A ' A t
[} (| [} !
' Has permissions 1 ' H L '
as SsSions]
: Has permissions : to access : : ‘t:e::‘ces‘s :
to access | agent scope ' ['
4 ' shai ' ' agen‘t comms '
user data | geley ‘ ' olie !
' ¥ » s | .
]]]
]]]
| | !
---------------->|:o o:|<- -------------- - 1 Read
: permissions
\ User Agent A , .
]]
e e]
]]
]]
b e e e e e e e e e e e e e e — — — — mmmmm]
] 4]
wﬁt?’ ' | SecretVault Postbox (User Agent's 4 & B) ' .
permissions ! ; : '
] 1]
—————— = e e e e I
;) l) : |
> Ou‘tpu‘t ; : Ou‘tpu‘t ; 'YX) :< ----- -
e e :
I
Stored under MPC across I
decentralised nodes ;
/

g L U S

Fig 2: Agent Specialisation (Communication) achieved with Nillion

In Fig 2. User Agent A is communicating with Agent B. User Agent A has access to the user’s health data, the
User Agent Scope Policy and the User Agent Communication Policy, that have all been uploaded to distinct
SecretVault by the end user. User Agent A communicates with Agent B via their shared Secret\/ault Postbox. In
this example, User Agent A is able to send output to Agent B, however Agent B is not allowed to send output to
User Agent A. This is enforced by the permissions on their shared postbox (Secret\Vault) - in particular User
Agent A has write permissions, while Agent B only has read permissions (to read what User Agent A has
outputted).

The Communication Nletwork principle is realised as the set of agents with which User Agent A can
communicate is well defined by the permissions set on the Secret\/ault Postboxes they share. The
Communication Policy principle is satisfied because User Agent A has access to the user's communication
policy - note only User Agent A has access to this due to the permission set on the Secret\V/ault in which it is
stored.

nillion 5

Agent Enforcement

Both flavours of Agent Specialisation provide strong guarantees that help minimise the negative impact a
rogue or malicious agent can cause. The proposed solutions to realise these concepts, however, are only
effective if the User Agent Scope and Communication policies are enforced. In this section we show how
Nillion’s Secret SDKs can be used to achieve Agent Enforcement by means of a Policing Agent.

e O
' '
Aqent Dpds gt L ois] LR et
3 scope Pol‘c‘/ >) commun:ca on
: : Po[-cy
' '
Enforcement rmmnemmnennneas emm e onnnaneee —
' ' '
! SecretTEE ' :
__________ Y o . A
I Vo
: SecretVault ; ; SecretVault
o 0 L1 (e feaned Lo
: o (eeiery (eeliep sy ©®° | (lpeleyy fReeleply °°° | Agent B
User Agent 4 o T T 1] RGN T L
) Stored under MPC across 1 | Stored under MPC across | : Q
Q : : decentralised nodes : : decentralised nodes ' []
! ‘\ ___________________ ’ ‘\ ___________________ 0O 0
o oh ; A A
! !]
: Ho\s‘t permissions : : Has permissions llR
' et erpe | Policing Agent 4 1 7o becess :
] POI]C{/ ! (Fot‘ Usej‘ Aﬁe’\t A) ' 5 POI;QV COMMU'\:Q&tQS :
! : : with Agent B 1
C Resd & : ! :
: ea Write i) '
' .. | ------>[o O:I(-----' : |
] pe,r‘wus&ons S et etk
' i
i '
— e . e - wn em wm En wm . e e e e e e . . - - -. ————————————————————————
| :
'
: | Read & Write
: G Rt TR (oA e e e IR A | permissions
: : SecretVault Postbox (User Aﬁen‘t AL Polic]ng Aﬁe_n‘t) : :
]
SN R R r— = € m -!
| [: [p)
l____>: : Ou'tpu‘t i : Ou‘tpu‘t i YY) : O
| I T |
Stored under MPC across 1
decentralised nodes ; Reowl Peﬁvﬁssions
’ End User
Fig 3: Agent Enforcement achieved with Nillion

Fig 3. shows howv a Policing Agent can be used to realise Agent Enforcement. Here, User Agent A wants to
communicate with Agent B, however it is not able to do so directly. Instead, it must communicate with its
Policing Agent. In particular, User Agent A must convince its Policing Agent to relay the desired output to
Agent B - in reality, this will require back and forth communication between the two agents. The Policing
Agent has access to both the User Agent Scope and Communication Policies (stored in a SecretVault it has
permissions to read from) but not the user’s health data. Only when the Policing Agent has been convinced to
share the output with Agent B, does it do so. \While it is not illustrated in Fig 3., the Policing Agent would (as per
previous situations) use a Secret\/ault Postbox to communicate with Agent B.

Both principles of Agent Enforcement are realised by this system design as follows. Independence is achieved
by the Policing agent only having access to the two User Agent Policies (Scope and Communication), and
nothing else. Transparency is achieved by the end user having read permissions on the Secret\/ault Postbox
shared between User Agent A and the Policing Agent. This means that the end user has access to the decision
making log (between User Agent A and its Policing Agent) and can thus understand any rational behind output
that is allowed to be sent to Agent B.

nillion 6

Conclusion

In this paper, we have introduced a novel framework for reasoning about the security and privacy of agentic
systems by defining Agent Specialisation and Agent Enforcement. \IWe then showed how Nillion’'s SecretSDKs
can be used to design agentic systems that satisfy Agent Specialisation and Enforcement.

It is clear that Agents will change Al and the world, and in doing so will require greater access to end user’s
data. It is vital that security and privacy are considered at every stage of this process, otherwise, the negative
Impacts of rogue or malicious agents could be unfathomable. By introducing our new framework and
demonstrating how Nillion’s SDKs can enforce it inside agentic systems we provide a clear path towards a
safer agentic world.

nillion

