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Abstract. In 1982, Yao introduced the problem of comparing two private values, thereby launching
the study of protocols for secure multi-party computation (MPC). Since then, comparison protocols
have undergone extensive study and found widespread applications.
We survey state-of-the-art comparison protocols for an arbitrary number of parties, decompose them
into smaller primitives and analyse their communication complexity under the usual assumption that
the underlying MPC protocol does preprocessing and computes linear operations without communi-
cation. We then develop two new comparison protocols and explain why they are faster than similar
protocols, including those that are commonly used in practice: they reduce the number of online multi-
plications, without increasing preprocessing or round complexity. More concretely, online bandwidth is
reduced by more than half for the standard comparison protocols whose round complexity is logarithmic
in the bit-length, whereas for constant round comparison protocols the reduction is two-thirds.

1 Introduction

In 1982, Yao introduced the problem of comparing two private values in a privacy-preserving manner, now
known as “Yao’s Millionaires’ problem” [48]. Over time this led to the development of many secure multi-party
computation (MPC) protocols, which enable a group to jointly perform a computation without disclosing
any private inputs [31]. Originally most MPC protocols would carry out a generic computation by rewriting
it as a Boolean circuit or an arithmetic circuit, and then execute each addition (or XOR) and multiplication
gate in this circuit using certain subprotocols. As many practical computations involve secure comparisons
(which securely determine whether one secret integer is larger than another one) and secure fixed-point or
floating-point arithmetic, many MPC protocols subsequently developed specialised subprotocols to handle
those subcomputations as efficiently as possible.

Moreover, almost all practical MPC protocols nowadays tend to compute addition gates without re-
quiring any communication; this includes those protocols that use linear secret sharing schemes (LSSS)
such as Shamir’s secret sharing [47,11,30,25,32] and additive secret sharing like SPDZ [26,10,37]. Real-world
applications of LSSS-based MPC protocols involving secure comparisons and secure fixed-point arithmetic
include:

– Auctions. The first ever large-scale MPC application happened in 2008, when the bids of 1229 farmers in
the Danish beet market were encrypted in order to protect their (financial) privacy [15], and the market
clearing price was determined by comparing these secret bids. A more advanced version of the same
platform was later used by the Norwegian 1800 MHz Spectrum Auction to trade approximately US$ 100
million in spectrum rights [3].

– Descriptive statistics. The first wide area network deployment of MPC came in 2010, when the Estonian
IT industry consortium wanted to gather sensitive data for a market survey; the published analysis re-
quired sorting of private data and division [14]. Later in Denmark, banks computed credit score analyses
of farmers using confidential accounting data [21]. Another example is the Boston wage gap MPC com-
putation by the Boston Women’s Workforce Council, demonstrating that the wage gap is larger than
previously estimated by the U.S. Bureau of Labor Statistics [39].1

– Evidence-based policy making. In 2015, Estonian statisticians looked for correlations between working
during university studies and failing to graduate in time. This required combining private tax and
education data [13].

1 Here the contents of certain cells were only revealed if a certain threshold was met.



– Fraud detection. In 2015, the Estonian Tax and Customs Board estimated VAT tax fraud by comparing
detailed but confidential purchase and sales data between companies [12].

– Biometric authentication. Unlike ordinary passwords, biometric identifiers tend to be hard to change
once compromised. Consequently, biometric authentication services are sometimes deployed with MPC;
typically the underlying algorithm determines whether the distance between two feature vectors is below
some threshold (e.g. [8, §6.2.3] or [1]).

Nevertheless, the deployment of MPC protocols to perform such computations still leads to serious efficiency
penalties, and research efforts have focused on improving the performance of the underlying primitives. In
contemporary MPC literature on secure comparison [45,18,40,22,41,27,7] and fixed- [19,18,27] and floating-
point arithmetic [6,35,17] protocols for groups of arbitrary size n ≥ 3, they all largely reduce to subprotocols
which compare the bits of a secret integer with the bits of a nonsecret integer. Sometimes these subprotocols
already vary in their outward properties (e.g. offering statistical rather than perfect privacy), and sometimes
the differences are all hidden “under the hood”. Even in the latter case, a careful deconstruction can already
lead to performance improvements.

For example, while most LSSS-based MPC protocols convert generic functions to (generalisations of)
arithmetic circuits in some domain Z/mZ with m > 2, comparing two integers usually comes down to
comparing bits which is more naturally a binary operation. This leads to two different approaches: perform
this bitwise comparison computation entirely inside of the original arithmetic domain Z/mZ, or employ
random values which are secret shared in both the original domain and in (an extension of) the binary
domain Z/2Z (e.g. [28]) to do the computation inside the latter domain, before transforming it back to the
arithmetic domain again. The former approach is taken by [45,40,27], and the latter by [22,41,7]. Nevertheless,
the two binary bit comparison protocols of [22,41] differ ([7] reuses the latter); while both protocols were
selected from [18] (which has protocols for either domain) and are functionally interchangeable, one will
outperform the other one due to having significantly lower communication complexity, whilst [7] should use
neither.

Similarly, [45] notes that his comparison protocol can be improved in communication complexity by mak-
ing the underlying bit comparison protocol (which itself cannot be deployed over Z/2Z) compare “two bits at
a time”. It appears that this idea was forgotten by the literature since then; we explain that it also speeds up
the state-of-the-art bit comparison circuit of [29], regardless of domain, and provide an in-depth analysis of
the consequences for communication complexity when comparing ν ≥ 1 bits “simultaneously”. Setting ν = 2
indeed improves both online and total bandwidth, but for most situations ν = 3 or ν = 4 is even better for
the bit comparison protocol of [45].

In this paper, we present two new (bit)comparison protocols, both of which can be finetuned by a
parameter ν ≥ 1. In their respective sections, we explain why they are faster and more efficient than similar
protocols in the MPC literature. In the appendices we also recall and make slight tweaks to other families of
comparison protocols. A rough guide to choosing between secure comparison protocols for any LSSS-based
MPC protocol with preprocessing could be as follows:

– If the round complexity is the primary bottleneck, the fastest protocol might be P3R,ν
LessThan; in the setting of

honest majority MPC it should be executable within 3 rounds, and within 4 rounds otherwise. A default
setting here might be ν = 3, possibly increasing it to ν = 4 for lower online bandwidth or lowering it to
ν = 2 for slightly lower total bandwidth (see Table 3).

– If a round complexity of roughly ⌈log2 ℓ⌉ is acceptable when comparing two values of bit-length ℓ, then
the protocol of P

logR,ν
LessThan should yield the lowest total bandwidth of all protocols considered when ν = 2,

see Table 1. Its online bitwise comparison component and some of its preprocessing can be executed over
a small field (employing say [28]) for even lower offline and much lower online bandwidth (assuming n is
not too large).

Our contributions

(i) We carefully deconstruct the comparison protocols of [45,18,40,22,41,27,7], explaining their commonal-
ities and differences.
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(ii) We present a constant-round secure comparison protocol P
3R,ν
LessThan with communication complexity

linear in the number of bits, based on the ideas of [45] and the 3-round protocol [18, LTZC1]. Compared
to the latter, the offline bandwidth is typically lower and it only uses a third of the online bandwidth
when ν = 3 (see Table 3).

(iii) We present a secure comparison protocol P
logR,ν
LessThan whose round complexity is logarithmic and band-

width complexity is linear in the number of bits, based on [29]. It costs one round fewer than similar
protocols [18, LTZL] and [29,22,41,27] (which are the comparison protocols used most often in practice
for LSSS-based MPC) and has less than half the online banwidth, whilst typically also slightly lowering
total bandwidth (see Table 4).

If one were to model the underlying MPC protocol with its access structure as an arithmetic black-box
FABB [24] providing security (possibly with abort) against an active or passive adversary, and also describe
the secure comparison operation as an ideal functionality FComparison in the UC framework [16], a more formal
security statement is as follows:

Theorem 1. The protocols P
3R,ν
LessThan and P

logR,ν
LessThan information-theoretically UC-realise FComparison in the

FABB-hybrid model against an adversary corrupting an authorised subset of parties.

2 Notation

– All logarithms are base 2, unless specified otherwise. The set of natural numbers without zero is denoted
N1, the set of integers by Z.

– The arithmetic computation domain is denoted Z/mZ, for some integer m. Traditionally m was assumed
to be prime [47], but Shamir’s secret sharing scheme is increasingly deployed for m nonprime (e.g. [5,4]).

– In addition to the usual linear operations, multiplication PMult and reveal PReveal subprotocols, the
underlying MPC protocol may have a special “public multiplication” subprotocol PPubMult (which given
secret sharings [x] and [y] publicly outputs the value xy), rather than naively composing PMult with
PReveal; to the best of our knowledge this notion first appeared in [18]. If the MPC protocol is say UC-
secure [16], then so are the protocols in this paper since they only reveal values that have been shifted
by random numbers.

– [·] denotes a secret shared value the underlying MPC protocol can securely perform all of its usual
operations on, e.g. in the context of threshold secret sharing it is a sharing of degree t, where t is the
maximum number of adversaries. J·K denotes a sharing on which linear operations and reveals are possible
but not necessarily multiplications; in the same context it could denote a sharing of any degree less than
the number of parties n. We set N := ⌈log n⌉.

– We let ℓ := ⌈log(m− 1)⌉ denote the bit-length of m− 1, so that 2ℓ−1 < m ≤ 2ℓ. Unless statistical slack
is used (e.g. [18]) this value will be only slightly larger than the bit-length of the inputs x, x′ for the
comparison subprotocols. For bandwidth computations we implicitly assume that m is close to 2ℓ, so that
the cost of constructing a bitwise shared random number is roughly the same as the cost of constructing
ℓ bits when using e.g. [46]. We write L := ⌈log ℓ⌉.

– The arity of certain bit operations is denoted by ν ∈ N1, and we write ℓν := ⌈ℓ/ν⌉ ≈ ℓ/ν. We use a
superscript • in the notation of protocols to denote two parameters: their round complexity and this
arity ν.

– The least significant bit of an element z ∈ Z/mZ is denoted z1, the next one by z2, etc., so that
z =

∑ℓ
i=1 2

i−1zi. We let [z]bit denote a bitwise sharing, i.e. a sharing of all of the bits of z; implicitly we
may assume that a sharing of z is included as well. This is generalised by [z]ν-bit, which reduces to [z]bit
in the case ν = 1; see Notation 43.

3 Survey of comparison protocols

In this section we survey state-of-the-art secure comparison protocols for an arbitrary number of parties;
recall that the problem is to compute a sharing [x < x′] of the Boolean x < x′ from a pair of secret sharings
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JxK, Jx′K of integers x, x′ ∈ Z. In the setting of honest majority threshold LSSS, allowing the degree of these
sharings to be larger than t+1 here can reduce a round of communication when one (or both) of the inputs
are obtained as for example the output of a multiplication or inner product gate.

The comparison problem is usually reduced to comparing a public value c with a secret random value
whose bits are secret-shared in some domain, typically either the original domain or (some extension of)
Z/2Z. For simplicity we will refer to such a secret as a bitwise-shared, and to such a comparison as a bitwise
comparison. The only exception to this approach that we’re aware of is [38, §II.B], but that protocol has
some issues; see Appendix B.

Originally, comparison protocols used an expensive online bit decomposition protocol [23]; shortly after-
wards, it was noticed that this can often be replaced with a “shifted bit decomposition” [42], as follows:

Protocol ShiftedBitDecomp

(z + r, [r]ν-bit)←− PShiftedBitDecomp
(
JzK, ν

)
1. The nodes retrieve from preprocessing a bitwise sharing [r]ν-bit, and locally compute Jz + rK := JzK+ [r].
2. The nodes then reveal this value: z + r ← PReveal(Jz + rK).

Fig. 1: Protocol to compute a shifted bit decomposition of a shared value

3.1 Range and the arithmetic domain

In practice the integers x and x′ are usually restricted to lie inside some range of integers [xmin, xmax) ⊂ Z
of size s := xmax − xmin; typical choices are the unsigned integers in the range [0, 2k) and signed integers
in the range [−2k−1, 2k−1), for some natural number k ∈ N1. This range is subsequently embedded by the
underlying arithmetic MPC protocol into the ring Z/mZ through the natural projection map

[xmin, xmax) ↪−→ Z −↠ Z/mZ ∼= [0, . . . ,m). (1)

The comparison subprotocol then usually has one of the following two properties:

(i) It is capable of computing [z < z′] for all elements z, z′ in [0, . . . ,m); by shifting the range of [xmin, xmax)
with xmin just before the start of this subprotocol, any [x < x′] can then be computed as long as s ≤ m.
– [42, §6.3] does this at the cost of three bitwise shared secret random values, three parallel bitwise

comparisons followed by two consecutive multiplications; they require that m is prime but this
condition is not necessary.

– [41, ΠLTS] costs two bitwise shared secret random values, three parallel bitwise comparisons and a
binary adder. If their binary adder is moved to preprocessing their preprocessing cost will be slightly
higher than [42, §6.3], but require a few less online rounds. Their correctness is probabilistic if m
is not a power of 2.

(ii) It is capable of computing [z < z′] for all elements z, z′ within a range of size m − 2ℓ−1 or m/2.
Depending on m and privacy requirements, these protocols only cost 1 or 2 two bitwise shared secret
random values plus bitwise comparisons, rather than 3.

The latter approach thus requires the underlying MPC system to increase the range of Z/mZ (adding
one or two bits), but is much more efficient in communication complexity otherwise. Mathematically, this
approach is done by:

3.2 Comparison with zero

Note that the difference x − x′ lies in the range (−s, s). Thus if Z/mZ can accommodate this range, we
obtain
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Protocol LessThan

[x < x′]←− P
•
LessThan

(
JxK, Jx′K

)
1. The nodes locally compute JyK := Jx− x′K and then execute

[x < x′]←− P
•
LessThanZero(JyK).

Fig. 2: Protocol to compute the sharing of the inequality of two shared values

We can distinguish two modern approaches to determining the boolean y < 0:

(i) Suppose that s ≤ m− 2ℓ−1 ≤ m/2. The negative range (−s, 0) then gets mapped under the projection
map (1) to (m−s,m) ⊆ (2ℓ−1,m) and the positive range to [0, s) ⊆ [0, 2ℓ−1). Thus it suffices to compute
the most significant bit of y. For this, a sharing of y mod 2ℓ−1 is computed (and then subtracted from
y). This computation costs a bitwise shared secret random number plus reveal, followed by a bitwise
comparison [18] and a second bitwise comparison if no statistical slack is used. Then the factor 2ℓ−1 is
removed for free if m is a prime [18], otherwise with a random bit plus reveal [22].

(ii) Suppose that s − 1 < m/2 and that m is odd, then it suffices to compute the least significant bit of
2y. This idea is due to [42]; in [27] it is implemented with a bitwise shared secret random value plus
reveal, a bitwise comparison and finally a multiplication.2 It is also used in [45], where the output of the
bitwise comparison is a bit different (see the next subsection) and consequently the last step requires
another second bitwise shared secret random number plus reveal instead.

Protocol LessThanZero

[y < 0]←− P
•
LessThanZero

(
JyK

)
1. The nodes locally compute JzK = 2JyK, then they compute

[y < 0]←− P
•
LSB(JzK).

Fig. 3: Protocol to compute a sharing of the sign of a secret number

3.3 Protocols for bitwise comparison

There are several protocols to compute a bitwise comparison; let us briefly review them. We assume that one
input z is bitwise shared (so its bits zi are secret-shared) whilst the other input c is public, and for simplicity
we assume that the bit-length ℓ is an even power of 2. The complexity of the protocols considered here (in
terms of the number of multiplication gates) is linear in the number of bits; for a protocol whose complexity
is logarithmic in the number of bits, see Appendix C. With the exception of the last approach, each of the
following works over any ring Z/mZ, including the binary domain Z/2Z.

Notation 31. We write [c
j

̸= z] := (cj ̸= [zj ]) := cj ⊕ [zj ] := cj + [zj ]− 2cj [zj ] for a sharing of the XOR of the
j-th bits of c and z, and similarly for other bit operations.

(i) The original protocol of [23] uses the identity (which is also used by [42,41,7])

[c < z] =

ℓ∑
i=1

(1− ci)
( ℓ∨
j=i

[c
j

̸= z]−
ℓ∨

j=i+1

[c
j

̸= z]
)
.

2 We note that this final multiplication can usually be integrated into the bitwise comparison protocol; if ℓ is not a
power of two, this would typically reduce the number of rounds by one.
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The natural approach to compute the right-hand-side is then to deduce it from a “prefix OR”; originally
this was done in
– 5 rounds at the cost of 3 prefix multiplications over ℓ terms3 and 2ℓ multiplications [42],4 but is

nowadays done in
– log(ℓ) rounds with ℓ log(ℓ)/2 multiplications [18] (using the scan of [33]), and can alternatively be

done in
– in 2 rounds at the cost of 1 prefix multiplication and 1 bitwise shared integer [18, PreOrC], when

only using statistical privacy,
– and is also done in 1 round after switching to a garbling protocol for ℓ log(ℓ)/2 multiplications [7].5

(ii) The protocol BitLTL in [18] (which is also used by [22]) computes the right-hand-side of

[c < z] = [c+ (2k − z) < 2k]

through a carry bit algorithm, in log(ℓ) rounds with 2ℓ− log(ℓ)− 2 multiplications.6
(iii) [29] (which is also the circuit employed by [27]) computes the right-hand-side of

[c < z] =

ℓ∑
i=1

[c
i
< z]

ℓ∏
j=i+1

[c
j
= z] =

ℓ∑
i=1

(1− ci)[zi]

ℓ∏
j=i+1

(
1− cj + (2cj − 1)[zj ]

)
in log(ℓ) rounds through 2ℓ− log(ℓ)− 2 multiplications.

(iv) Finally, the 3-round LTZC1 and 5-round LTZC2 protocols of [18] and the constant-round protocols of
[45] compute [c < z] by first computing

ℓ∑
i=1

[c
i
< z]2

∑ℓ
j=i+1[c

j

̸= z] =

ℓ∑
i=1

(1− ci)[zi]

ℓ∏
j=i+1

(
1 + cj + (1− 2cj)[zj ]

)
, (2)

and then extracting its least significant bit (by two slightly different methods, due to the difference in
privacy).

At first glance, the final approach seems less efficient than the others:

– Extracting the least significant bit requires an extra bitwise shared secret random number [45] or a re-
duction from information-theoretic security and perfect privacy to computational security and statistical
privacy [18].

– If m ̸= 2ℓ there is a chance of overflow, yielding only probabilistic correctness (but this is fixed with
ν > 1, see Remark 3(i)).

– Unlike the other approaches, it does not correspond to a binary computation which can be performed
over Z/2Z.

However, it comes with two advantages:

– The terms in the prefix product are always nonzero, which allows for the prefix multiplication to be done
in one online round without extra tricks [9,42,18], leading to a protocol that is significantly faster than
the constant-round protocols of approach (i). Moreover, invertibility allows for fast bit-decompositions
[44] (in the setting of computational security).

– The same formula works when comparing not one but multiple bits simultaneously, and this can be much
faster. In the next section we give a careful analysis explaining why this is indeed optimal for reducing
total bandwidth, and use the same trick in a different protocol.

3 The actual algorithm performs 3
√
ℓ prefix multiplications of

√
ℓ terms, which has the same cost.

4 This method of requires a ring containing [0, . . . , ℓ+ 1].
5 They state they use the circuit of [41], which seems to use the circuit of [18], but one might as well use a circuit

with ℓ multiplications.
6 In [18] it uses 2ℓ− 2 multiplications, but one can be skipped in each round [36].
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4 Comparing multiple bits simultaneously

In the paper [45], several methods are described to construct a constand-round comparison protocol. Of
particular note is the the idea of [45] to compare 2 bits simultaneously, and apply this speed up the online
computation of equation (2). More generally, one could consider comparing ν bits simultaneously; we will
use this in our 2-round bitwise comparison protocol of subsection §5.1, which largely follows [45], but also in
our logarithmic-round protocol of subsection §5.2 which is inspired by [29]. For the latter protocol, we have
added another improvement which is described in subsection §5.2.2. This section is dedicated to a careful
analysis of the implications on communication complexity of varying over the natural number ν.

4.1 Möbius inversion

Recall that a Boolean function f with arity k can be extended to a multilinear polynomial pf in the polynomial
ring Z[X1, . . . , Xk] through the formula

pf (X1, . . . , Xk) =
∑

a∈{0,1}k

f(a)
∏

i:ai=0

(1−Xi)
∏

i:ai=1

Xi. (3)

This section focuses on Boolean functions fν on two inputs of size ν ≤ ℓ (so these functions have arity 2ν):

Notation 41. For s ∈ {0, 1}ν let si denote the i-th bit of s and consider the multilinear monomial xs :=
xs1
1 · · ·xsν

ν (and similarly for c). Now given a Boolean function fν : {0, 1}ν × {0, 1}ν → {0, 1}, let us expand
and then rewrite the polynomial (3) as

pfν (c, x) := pfν (c1, . . . , cν , x1, . . . , xν) =
∑

s̃,s∈{0,1}ν

ps̃,sfν
cs̃xs =

∑
s∈{0,1}ν

psfν (c)x
s,

where the coefficients ps̃,sfν
lie in Z and the polynomials psfν (·) are thus defined as psfν (c) :=

∑
s̃∈{0,1}ν p

s̃,s
fν

cs̃.
See also Examples 1 and 2.

Furthermore, recall the Hamming weight |s| :=
∑ν

i=1 si of a bit vector, and recall the partial ordering on
bit vectors which is given by

s′ ≤ s if and only if si = 1 when s′i = 1.

Given a Boolean function fν we can precompute (and store as an associative array) the coefficients ps̃,sfν
using Möbius inversion, which we will interpret as the data for the function pfν :

Protocol ArithFunc

pfν ←− PArithFunc
(
fν

)
1. For all pairs s̃, s in {0, 1}ν , the nodes locally compute the coefficients

ps̃,sfν
= (−1)|s̃|+|s|

∑
s̃′≤s̃,s′≤s

(−1)|s̃
′|+|s′|fν(s̃

′, s′)

Fig. 4: Protocol to compute the coefficients of a Boolean function in two variables

Given the value c, the coefficients psfν (c) of the partial functions pfν (c, ·) can be computed straightfor-
wardly:
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Protocol PartArithFunc

pfν (c, ·)←− PPartArithFunc
(
fν , c

)
1. The nodes retrieve from preprocessing a list of integers: pfν ← PArithFunc(fν).
2. The nodes locally compute for each s the integers

psf (c) =
∑

s̃∈{0,1}ν
ps̃,sfν

cs̃.

Fig. 5: Protocol to compute the coefficients of the partial application of a Boolean function in two variables

Proposition 1. Consider the Boolean functions c < x and c = x, acting on a pair of positive integers c, x
of bit-length ν in the usual way, as functions on their bits c1, . . . , cν , x1, . . . , xν . First extend both of these
functions to polynomials pc<x and pc=x in Z[c1, . . . , cν , x1, . . . , xν ], and then expand these polynomials into
monomials for the second set of variables x1, . . . , xν , so

pc<x =
∑

s∈{0,1}ν

psc<x(c1, . . . , cν)x
s, and pc=x =

∑
s∈{0,1}ν

psc=x(c1, . . . , cν)x
s.

Then:

(i) For all s ̸= (0, . . . , 0), the constant term of psc<x(c1, . . . , cν) is given by (−1)|s|+1.
(ii) For all s, the constant term of psc=x(c1, . . . , cν) is given by (−1)|s|.

In particular, for those elements s the monomials psc<x and psc=x are never zero.

Proof. By a form of Möbius inversion applied to the function f(c, x) (see Figure 4 and 5), it follows that

psf (0) = (−1)|s|
∑
s′≤s

(−1)|s
′|f(0, s′).

(i): For each s′ ≤ s not equal to the zero vector, we have f(0, s′) = 1, so by the binomial theorem

psf (0) = (−1)|s|
∑

1≤i≤|s|

(
|s|
i

)
(−1)i = (−1)|s|

(
(1− 1)n −

(
|s|
0

)
(−1)0

)
= (−1)|s|+1.

(ii): If s′ ≤ s is equal to the zero vector then f(0, s′) = 1, and otherwise f(0, s′) = 0.

Example 1. Suppose the bit-length ν is 1. Then

pc<x = (1− c1)x1 and pc=x = 1− c1 + (2c1 − 1)x1.

Example 2. Suppose the bit-length ν is 2. Then

pc<x = (1− c1)(1− c2)x1 + (1− c2)x2 + (1− c1)(2c2 − 1)x1x2,

pc=x = (1− c1)(1− c2) + (2c1 − 1)(1− c2)x1 + (1− c1)(2c2 − 1)x2

+ (2c1 − 1)(2c2 − 1)x1x2.

Proposition 2. In order to construct the arithmetic analog (3) of the Boolean function c < x or c = x from
variables x1, . . . , xν , we need to do 2ν − ν − 1 multiplications on these variables; this can be done in ν − 1
rounds.
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Proof. By the previous proposition, we need to construct the monomial xs for each subset s ∈ {0, 1}ν . We
do this inductively: pick i such that the i-th component of s is nonzero, then xs = xs′xi where s′ is the same
as s except that it is zero at the i-th coordinate. Thus xs is obtained in a single multiplication from xs′ ;
from the binomial theorem we now find that the required number of multiplications is equal to the number
of degree > 1 terms, which is

∑ν
k=2

(
ν
k

)
= 2ν − ν − 1. Since none of these terms can be obtained “for free”

from others (by linear independence), this is the most efficient construction possible.

Notation 42. Let x be a positive integer of bit-length ν. We then denote by [x]ν-bit the set of sharings [xs] for
all s ∈ {0, 1}ν , i.e. sharings of all possible products of the bits of x, but leaving out [x(0,...,0)] and sometimes
implicitly replacing it by the constant value 1.

Example 3. Suppose the bit-length ν is 2. As is evident from Example 2, both pc<x and pc=x are linear
combinations of the monomials x1, x2, x1x2. Out of these only x1x2 is not of degree 1; it can be constructed
in a single multiplication by multiplying x1 and x2, and indeed 1 = 22 − 2 − 1. By definition, [x]ν-bit :=
{[x1], [x2], [x1x2]}.

When c and x have bit-length ν, with the former value public and the latter secret-shared, we can locally
compute secret-sharings of their function evaluations as follows:

Protocol PartArithFuncSharing

[f(c, x)]←− PPartArithFuncSharing
(
fν , c, [x]ν-bit

)
1. The nodes locally compute a list of integers: pf (c, ·)← PPartArithFunc

(
fν , c

)
.

2. They locally compute the secret sharing

[f(c, x)] =
∑

s∈{0,1}ν
psf (c) [x

s].

Fig. 6: Protocol to compute a sharing of the partial application of a Boolean function on a public value and a
bitwise shared value

Once a value c in {0, 1}ℓ in a bitwise comparison protocol is revealed, we split it into values lying in
{0, 1}ν :
Notation 43. For i in {1, . . . , ⌈ℓ/ν⌉} we let cν,i ∈ {0, 1}ν denote the value obtained by using the ν bits
c1+(i−1)ν , . . . , ciν of c (setting the superfluous bits between ℓ and ν⌈ℓ/ν⌉ to zero), and similarly for xν,i.
We then denote by [x]ν-bit(i), for each i in {1, . . . , ⌈ℓ/ν⌉}, the following data: all possible products of the
sharings of the ν bits x1+(i−1)ν , . . . , xiν of xν,i. We let [x]ν-bit denote the collection of this data for all i in
{1, . . . , ⌈ℓ/ν⌉}.

For each i we can then apply fν on cν,i and [x]ν-bit(i) and store the result in an array f c,xν :

Protocol PartArithFuncSharings

[f c,xν ]←− PPartArithFuncSharings
(
fν , c, [x]ν-bit

)
1. For each i in {1, . . . , ⌈ℓ/ν⌉)}, the nodes locally compute

[f c,xν (i)]← PPartArithFuncSharing
(
fν , cν,i, [x]ν-bit(i)

)
.

Fig. 7: Protocol to compute multiple sharings of the partial application of a Boolean function on a public value and
a bitwise shared value
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Definition 1. Let c and x be two positive integers of bit-length ℓ and pick a natural number ν ∈ N1. By

c
i
=
ν
x and c

i
<
ν
x

we then denote the usual ν-bit comparison operators acting on the i-th tuple of ν bits of c and x as in
Notation 43, meaning that if the bits of c and x are given by c1, . . . , cℓ and x1, . . . , xℓ, then it applies those
operators on the bits c1+(i−1)ν , . . . , ciν and x1+(i−1)ν , . . . , xiν .

Corollary 1. Pick a natural number ν ∈ N1. Constructing the secret-shared ν-bit operators

[c
i
=
ν
x] and [c

i
<
ν
x]

for a public value c and bitwise-shared value [x]bit of bit-length ℓ, costs at most (2ν−1)⌈ℓ/ν⌉−ℓ multiplications,
with equality if ν divides ℓ.

Proof. This follows from Proposition 2 and

(2ν − ν − 1)⌈ℓ/ν⌉ ≤ (2ν − 1)⌈ℓ/ν⌉ − ℓ.

Briefly denoting these operators by lt and eq, we finally obtain:

Protocol nAryComps

([eqc,z
ν ], [ltc,zν ])←− PnAryComps

(
c, [x]ν-bit

)
1. For f in {eq, lt}, the nodes locally compute the array [f ]← PPartArithFuncSharings(fν , c, [x]ν-bit).

Fig. 8: Protocol to compute a sharing of the least significant bit of a bounded shared value

5 Our bitwise comparison protocols

In this section we describe two bitwise comparison protocols, P
2R,ν
BitLessThan and P

logR,ν
BitLessThan, both of which

are parametrised by the bit operator arity ν. The first is based on [45], the second one on [29]. Their
bandwidth when compiled into a full comparison protocol using MPC protocol [2] is approximated in Table
1. Since these second family of bitwise comparison protocols can be executed over Z/2Z, we have added
quick communication complexity estimates when doing so using (passive security) edaBits [28].

Protocol [2] [2] with edaBits [28]
Total bandwidth Rounds Total bandwidth Rounds

Offline Online Offline Online

P
3R,2
LessThan 18ℓ2 1ℓ2 3

P
3R,3
LessThan 19.33ℓ2 0.67ℓ2 3

P
3R,4
LessThan 24ℓ2 0.5ℓ2 3

P
logR,2
LessThan 8.86ℓ2 1.86ℓ2 L+ 1 4.5nℓN 1.86ℓN L+ 2

P
logR,3
LessThan 11.61ℓ2 1.28ℓ2 L+ 1

Table 1: Bandwidth approximation of various comparison protocols, in terms of bits sent per node; here m is odd,
and for the meaning of ℓ, L and N see §2.
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Remark 1. While the idea of [25] of using “king” nodes doubles the number of communication rounds (which
we have neglected in Table 1), the paper [32] showed that they also allow one to subsequently reduce the depth
of arithmetic circuits (consisting of only addition and multiplication gates) by half again. The comparison
protocols in this paper benefiting from that reduction are the ones under discussion in subsection §5.2. But
employing this trick for such protocols yields new protocols which are quite similar in shape to the original
ones, and therefore the performance comparisons between the protocols in §5.2 are reasonable.

5.1 A 2-round protocol

In this subsection we describe a constant-round bitwise comparison protocol, based on [45], resulting in a
constant-round comparison protocol P3R,ν

LessThan depending on a natural number ν. Correctness is probabilistic
when ν = 1, and is perfect otherwise. Concretely, we have made the following two improvements:

– Just like [18, BitLTC1] but also deploying it for ν > 1, we use public multiplications to significantly
reduce in the honest majority setting the offline and online round complexity of computing the sharing

Jφc,z
ν K :=

ℓν∑
i=1

[c
i
<
ν
z]2

∑ℓ
j=i+1[c

j

̸=
ν
z]
.

– We slightly improve the algorithm of [45] that is used to extract the least significant bit of Jφc,z
ν K. As a

side-effect the bit-size of the ring is halved, and hence our total bandwidth is less than that of [45].

The only similar comparison protocols that we are aware of are the 3-round [18, BitLTC1] and the 5-round [18,
BitLTC2], but neither of those are information-theoretically secure (ITS) and their other improvements are
minor. In particular, the efficiency gains they obtain from using statistical privacy are relatively small, so in
Table 2 we estimate the communication complexity of their protocols after making the following modifications:
bitwise-shared random values are constructed using a standard ITS algorithm [46] rather than relying on
pseudorandom secret sharing, and are used to extract the desired least significant bit (see Figure 10). If
preferred the reader can undo these modifications and make the analogous modifications to our protocol; the
relative analysis barely changes.

Theorem 2. The subprotocol decomposition of the protocol P3R,ν
LessThan is described in Table 2. If the bit-length

ℓ is not too small, its communication complexity when using MPC protocol [2] can be approximated as follows,
in terms of elements sent per node in Z/mZ:

– Offline bandwidth: 6ℓ+ (8 + 22+ν)ℓν .
– Online bandwidth: 4 + 2ℓν .

Example 4. For arity 1 ≤ ν ≤ 5 we used the approximation ℓν ≈ ℓ/ν and compared it to the constant-round
protocols of [18] in Table 3. All subprotocols take 3 communication rounds for honest majority MPC and 4
rounds for dishonest majority MPC, except [18, LTZC2] which takes two extra rounds in either setting. Note
that the relative performance of the latter degrades somewhat in the dishonest majority setting due to its
use of a dot product.

Remark 2. As we are unsure how exactly [45] intends to compute Jφc,z
ν K for ν > 1 (but does note that ν = 2

is more efficient), we have left it out. It is possible that P
3R,2
LessThan is quite similar to the “intented” protocol

of [45] (but with half the ring bit-length), but as our protocol seems to outperform the two constant-round
protocols of the later [18] (its 3-round protocol is still the one used in [36] and [17]) it appears that this
intention went unnoticed.
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Protocol Subprotocols

Offline Online
PRand PMult PPubMult PMult PPubMult PReveal PDotProd

[18, LTZC1] 4ℓ 1ℓ 3ℓ 0 ℓ 2 0
[18, LTZC2] 3ℓ 0.5ℓ 2.5ℓ 0.5ℓ 0.5ℓ 2 1

P
3R,2
LessThan 3ℓ 1ℓ 2.5ℓ 0 0.5ℓ 2 0

P
3R,3
LessThan 2.67ℓ 1.67ℓ 2.33ℓ 0 0.33ℓ 2 0

P
3R,4
LessThan 2.5ℓ 3ℓ 2.25ℓ 0 0.25ℓ 2 0

P
3R,ν
LessThan 2(ℓ+ ℓν) 2νℓν − ℓ 2ℓ+ 1ℓν 0 1ℓν 2 0

Table 2: Approximate subprotocol decomposition of some MPC comparison protocols into smaller primitives; for
notation ℓ and ℓν see §2. The first two protocols were slightly modified to make them information-theoretically

secure. The number of PRand’s and PPubMult’s decreases by ℓ for all of the P
3R,ν
LessThan protocols when m is even, and the

input of PDotProd are two vectors of size ℓν .

Protocol [18, LTZC1] [18, LTZC2] ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

Offline 23ℓ 17ℓ 22ℓ 18ℓ 19.33ℓ 24ℓ 33.2ℓ
Online 2ℓ 2ℓ 2ℓ 1ℓ 0.66ℓ 0.5ℓ 0.4ℓ

Table 3: Approximation of the bandwidth of ITS-versions of comparison protocols from [18] and protocol P3R,ν
LessThan

for various bit operator arities ν in the setting of MPC protocol [2], in terms of the number of elements of Z/mZ
sent per node. All protocols have 3 communication rounds, except for [18, LTZC2] which has 5.

Finally,we note that [7] provides a 4-round comparison protocol by executing the bitwise comparison
using garbled circuits, but both the offline and online bandwidth will be significantly higher; for the latter,
observe that keys need to be broadcasted by each node for each of the ℓ bits, resulting in ℓκ(n−1) bits, where
κ is the computational security parameter. As usually κ ≥ 40 and ℓ ≤ 64, we usually have ℓκ(n− 1) ≥ 2ℓ2.
With regards to preprocessing, note that [7] uses a circuit which is optimised for a low number of rounds
(though as we noted earlier, not the best one to use for that purpose), whereas in the garbled setting it
would be better to use a circuit which is focused on minimising the number of multiplications. (Since it uses
a pseudorandom function, this method moreover is not information-theoretically secure).

In the next two subsections we explain our considerations in-depth, before presenting our protocol.

5.1.1 On prefix multiplications and public dot products

Although phrased somewhat ambiguously, [45] seems to employ the identity xb = 1+(x− 1)b for bits b with
x = 2 and also x = 2−2 to first decompose

2
∑ℓ

j=i+1[c
j

̸= z] = 2
∑ℓ

j=i+1 cj+[zj ]−2cj [zj ]

= 2
∑ℓ

j=i+1 cj2
∑ℓ

j=i+1[zj ]2−2
∑ℓ

j=i+1 cj [zj ]

=

ℓ∏
j=i+1

2cj
ℓ∏

j=i+1

2[zj ]
ℓ∏

j=i+1

(2−2)cj [zj ]

=

ℓ∏
j=i+1

(1 + cj)

ℓ∏
j=i+1

(1 + [zj ])

ℓ∏
j=i+1

(
1 + (2−2 − 1)cj [zj ]

)
and then compute these products as follows:

– The first product
∏ℓ

j=i+1(1 + cj) is computed online, locally.
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– The second product
∏ℓ

j=i+1(1 + [zj ]) is computed online through a standard prefix multiplication algo-
rithm [9,23].

– The third product
∏ℓ

j=i+1(1 − 3
4cj [zj ]) is computed online through a modified prefix multiplication

algorithm: offline for each j there are two multiplications of 1 − 3
4cj [zj ] with its prefix “mask”, namely

for each cj in {0, 1}, and online only the share is revealed corresponding to the cj that appears.

Thus this algorithm requires doing two prefix multiplications of size ℓ in parallel, one of which has extra
preprocessing, and then a final multiplication is required (which can be preprocessed) for each j to multiply
the second and third product. We note that:

– The preprocessing of two multiplications for the third product is not necessary when using public mul-
tiplications as in [18], as the public multiplication of 1− 3

4cj [zj ] with its mask happens online instead.
– In fact, for the same reason the expressions

2

∑ℓν
j=i+1[c

j

̸=
ν
z]
=

ℓν∏
j=i+1

(1 + [c
j

̸=
ν

z]) (4)

can be computed using just one prefix multiplication algorithm of size ℓν .

For ν = 1 these observations are also implicit in [18, BitLTC1], but we will end up using them for ν > 1.
Another feature of [18, BitLTC1] is to locally compute the entire sharing [φc,z

ν ] from this prefix multiplication,
however:

– This trick does not seem to extend to ν > 1, but setting ν = 2 is a major improvement to offline and
online efficiency.

– The next step is to execute a reveal algorithm; we will merge that with the dot product required to turn
(4) into [φc,z

ν ], yielding a public dot product which is almost as efficient and works for arbitrary ν.

The 5-round [18, BitLTC2] protocol is somewhat reminiscent of our ν = 2 protocol but by doing too much
work in the online phase that protocol seems to partially miss the point that [45] was trying to make.

In the dishonest majority setting, the final dot product instead requires ⌈ℓ/ν⌉ multiplications (which can
be preprocessed into the prefix multiplication to save one round):

Protocol CompPhi

Jφc,z
ν K←− PCompPhi

(
c, [z]ν-bit

)
1. The nodes locally compute ([neqc,z

ν ], [ltc,zν ]) ← PnAryComps(c, [z]ν-bit), then locally compute the array
[1+ neqi] := 1 + [neqi].

2. The nodes run a prefix multiplication [18] to compute

(
[1 + neqℓν

], . . . , [

ℓν∏
i=2

1 + neqi]
)
←− PPrefixMult

(
[1+ neq]

)
,

where the ordering of the array [1+ neq] is reversed and its last element is dropped.
3. Renaming this array

(
[aℓν ], . . . , [a1]

)
and setting aℓν := 1, the nodes locally compute the dot product

Jφc,z
ν K =

ℓν∑
i=1

[ai][lti].

Fig. 9: Protocol to compute a (high degree) sharing of φc,z
ν
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5.1.2 Extracting the least significant bit

When m is even, a sharing of the least significant bit can be obtained easily (which is well-known) by
computing the residue modulo 2 of the shares.

When m is odd the situation is more complicated. In order to avoid a circular situation (extracting a least-
significant-bit to extract a least-significant-bit, etc.), a bound on φc,z

ν is used to extract its least significant bit
with a simple method. [45] requires the bound φc,z

ν <
√
4m, which roughly doubles the bandwidth required,

whereas we merely require that 2ℓ−1 + 2ℓν ≤ m ≤ 2ℓ, a fairly innocent requirement on m when ν > 1. We
will use

Proposition 3. We have 0 ≤ φc,z
ν ≤ 2ℓν − 1.

Proof. By definition

φc,z
ν =

ℓν∑
i=1

(c
i
<
ν
z) 2

∑ℓν
j=i+1 c

j

̸=
ν
z
≤

ℓν∑
i=1

2
∑ℓν

j=i+1 1 =

ℓν∑
i=1

2i−1 = 2ℓν − 1.

Remark 3. (i) If ν = 1 and m ̸= 2ℓ then this range does not fit inside of Z/mZ so an overflow might occur,
implying that this protocol only has statistical correctness.

(ii) If ν is large a small improvement in bandwidth can potentially be gained by generating all bits in a
ring containing 2ℓν .

Proposition 4. Pick a pair of natural numbers ℓ′′ < ℓ′ and let 2ℓ
′−1 + 2ℓ

′′ ≤ m ≤ 2ℓ
′
. Pick any numbers

0 ≤ φ < 2ℓ
′′

and 0 ≤ r < m, and let 0 ≤ c < m be the remainder of φ + r modulo m. Then there is an
identity of Boolean values

(c < r) = rℓ′
(
1− cℓ′

)
.

Proof. The identity says that the Boolean c < r is equal to 1 if and only if rℓ′ = 1 and cℓ′ = 0 both hold.
If the latter conditions hold then indeed c < 2ℓ

′−1 ≤ r. In the converse direction, since φ+ r > r it follows
from c < r that φ+ r > m. If rℓ′ = 0 then φ+ r < 2ℓ

′′
+ 2ℓ

′−1 < m which is a contradiction, so rℓ′ = 1. But
also φ+ r < 2ℓ

′−1 +m which yields cℓ′ = 0.

Corollary 2. Suppose m is odd. Then the least significant bit φ1 of such φ is given by

φ1 = cℓ′(c1 ⊕ r1) + (1− cℓ′)(c1 ⊕ r1 ⊕ rℓ′),

and given another bit r′1 we have

r′1 ⊕ φ1 = cℓ′(c1 ⊕ r′1 ⊕ r1) + (1− cℓ′)(c1 ⊕ r′1 ⊕ r1 ⊕ rℓ′),

Proof. For arbitrary m, the least significant bit is given by

φ1 = c1 ⊕ r1 ⊕ δm(c < r) = c1 ⊕ r1 ⊕ δmrℓ′
(
1− cℓ′

)
,

where δm is 1 if m is odd and 0 otherwise. For odd m, both claims now follows from the bit identity
a⊕ bc = a+ bc− 2abc = a(1− c) + (a⊕ b)c.

In the next protocol, we assume that m is odd and that a sharing [r1⊕ rℓ′ ] was already computed during
preprocessing. In [45] an additional multiplication is preprocessed, but we won’t have to.

Protocol LSBBounded

[φ1]←− PLSBBounded
(
JφK

)
1. The nodes compute a shifted decomposition (φ+ r, [r]bit)← PShiftedBitDecomp(φ, 1), and set c := φ+ r.
2. They locally compute

[φ1] = cℓ′(c1 ⊕ [r1]) +
(
1− cℓ′

)
(c1 ⊕ [r1 ⊕ rℓ′ ]).

Fig. 10: Protocol to compute a sharing of the least significant bit of a bounded shared value
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This yields

Protocol BitLessThan

[c < z]←− P
2R,ν
BitLessThan

(
c, [z]ν-bit

)
1. The nodes compute Jφc,z

ν K← PCompPhi(c, [z]ν-bit).
2. The nodes then compute [c < z]← PLSBBounded(Jφc,z

ν K).

Fig. 11: Protocol to compute a sharing of the comparison of a public value and bitwise shared value

If we were to directly use this bitwise comparison protocol, we would end up with

[z < 0] = c1 ⊕ [r1]⊕ [c < r]

which would cost another round of communication to compute. This will be avoided by doing a bit of
preprocessing: again assume that m is odd and now suppose that sharings [r′1 ⊕ r1] and [r′1 ⊕ r1 ⊕ rℓ′ ] are
already computed during preprocessing, where [r′1] is the first bit of another bitwise shared random value
[r′]bit.

Protocol LSB

[z1]←− P
3R,ν
LSB

(
JzK

)
1. The nodes compute a shifted decomposition (z + r, [r]ν-bit)← PShiftedBitDecomp(z, ν), and set c := z + r.
2. The nodes compute JφK← PCompPhi(c, [r]ν-bit).
3. The nodes compute another shifted decomposition (φ + r′, [r′]bit) ← PShiftedBitDecomp(φ, 1) and set c′ :=

φ+ r′.
4. They locally compute

[z1] = cℓ′(c1 ⊕ [r′1 ⊕ r1]) +
(
1− cℓ′

)
(c1 ⊕ [r′1 ⊕ r1 ⊕ rℓ′ ]).

Fig. 12: Protocol to compute a sharing of the least significant bit

Following, for example, the second approach in §3.2, the protocol P3R,ν
LessThanZero can now be implemented

as follows:

5.2 A logarithmic-round protocol

Finally, we turn towards the remaining bit comparison protocols [18, LTZL] and [22,41,27]. As explained in
§3, their protocols share the following properties:

– The number of rounds is log(ℓ),
– Their offline and online bandwidth are linear in ℓ,
– The bit computations can be done over Z/2Z if desired.

The protocol [22, BitLT] is identical to [18, BitLTL], whereas the protocol [27, BitComp] comes from [29,
§3.1]. We use the latter circuit but obtain the following improvements (when setting ν = 2):

– The number of rounds decreases by 1.
– Total bandwidth drops by more than 25%.
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– Online bandwidth drops by more than 50%.

The resulting bitwise comparison protocol compares to its brethren as follows:7

Bitwise comparison [41, LTBits] [18, BitLTL] [29, §3.1] P
logR,2
LessThan

Offline PMult 0 0 0 0.5ℓ
Online PMult 0.5Lℓ 2ℓ 2ℓ 0.93ℓ

Number of rounds L L L L− 1

Table 4: Approximate decomposition of various bit comparison protocols into smaller primitives. For the meaning of
ℓ and L see §2.

As these protocols consist only of addition and multiplication gates, the number of communication rounds
can be halved with [32] and the bandwidth decreased by performing bit computations over Z/2Z. But since
the effects of these changes on these protocols will be more-or-less “proportional”, it should not change the
comparison between these protocols. See also Remark 1.

5.2.1 Implementing higher arity bit operations

The most efficient of the circuits in §3.3 requires 2ℓ − log(ℓ) − 2 multiplications. One of these is the circuit
of [29], which can be interpreted as being composed of various bit operations; modifying those to act on
multiple bits simultaneously just as in §4 yields:

Theorem 3. Pick a natural number ν ∈ N1. The secure comparison [c < x] for a public value c and bitwise-
shared value [x]bit of bit-length ℓ can be computed (in the worst-case) with the following communication
costs:

– The number of online rounds is ⌈log(ℓν)⌉.
– The number of offline multiplications is (2ν − 1)ℓν − ℓ.
– The number of online multiplications is 2ℓν − log(ℓν)− 2.

So (in the worst-case) the total number of multiplications is: (2ν + 1)ℓν − ℓ− log(ℓν)− 2.

Proof. For simplicity we will estimate the complexity of comparing integers of bit-length νℓν ≥ ℓ. The
number of offline multiplications comes from Corollary 1. The goal is to compute

[c < z] = [c
ℓν
<
ν
z] + [c

ℓν−1
<
ν

z][c
ℓν=
ν
z] + · · ·+ [c

1
<
ν
z]

ℓν∏
k=2

[c
k
=
ν
z].

Following [29], we can compute the right-hand-side in ⌈log ℓν⌉ rounds with 2ℓν − log(ℓν)− 2 multiplications
through the following recursive algorithm: for each i in ⌈ℓν/2⌉, set

ai := [c
2i
<
ν
z] + [c

2i−1
<
ν

z] · [c 2i
=
ν
z] and bi := [c

2i
=
ν
z] · [c 2i−1

=
ν

z]. (5)

Then

[c < z] = aℓν/2 + aℓν/2−1bℓν/2 + · · ·+ a1

ℓν/2∏
k=2

bk.

This halves the size of the circuit and inductively leads to a total of 2(ℓν − 1) multiplications, which we can
reduce by log(ℓν) if we skip the computation of the final bi in each round.
7 [41] writes that they are using a prefix OR protocol from [18] to compute the circuit of [23]. Since their computation

takes place over Z/2Z this prefix OR protocol is not [18, PreOrC], so we presume it is a specialisation of [18, PreOpL].
It is explicitly stated on [18, p. 10] however that this would lead to a less efficient algorithm than [18, BitLTL];
Table 4 suggests that this is true when the bit-length (which we assume is a power of 2) is at least 16.
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We illustrate these values for low ν in the following table, where for simplicity we assume that ℓ = 2L is
a power of 2 and assume that it is not too small so that we can ignore lower-order terms:

Bit arity ν Number of rounds Offline PMult Online PMult Total PMult

1 L 0 2ℓ 2ℓ
2 L− 1 0.5ℓ ℓ 1.5ℓ
3 L− 1 1.33ℓ 0.66ℓ 2ℓ
4 L− 2 2.75ℓ 0.5ℓ 3.25ℓ
5 L− 2 5.2ℓ 0.4ℓ 5.6ℓ

Table 5: Worst-case communication complexity of computing the secure comparison of a public value and a bitwise
shared value for various ν. Here ν denotes the number of bits to be compared simultaneously and the last three

columns denote the number of invocations of the subprotocol PMult which multiplies two secret values.

5.2.2 Redundant multiplications

Now let us briefly describe the second optimisation. If c and x are two positive integers of bit-length ν and
c turns out to be equal to the maximum value 2ν − 1, then the Boolean value c < x is zero, regardless of
what the value of x is. If c is uniformly random, the probability of this happening is 2−ν . The same is then
true for the integers cν,i constructed from c of bit-length ℓ, if ℓ is divisible by ν and c is uniformly random.
The latter holds in every in every8 subprotocol from section §3 for the public input value c of the bitwise
comparisons. We will use this observation to reduce the number of multiplications required to compute the
protocol (5).

Definition 2. If given such a public value c it follows that a multiplication in (5) can be skipped, we call it
redundant.

Now let us turn to the online phase of the bitwise comparison protocol. The following quantity will arise:

Definition 3. Assume that ℓ is a power of 2 and for 1 ≤ ν ≤ ℓ consider the real number

γν,ℓ :=
1

ν

⌈log(ℓν)⌉∑
i=1

2−2i−1ν−i.

For fixed ν, the sequence γν,1, γν,2, . . . converges as it is dominated by the geometric series with ratio 1/2.

Example 5. Suppose that ν = 1. Then
0.25 ≤ γ1,ℓ < 0.321.

Example 6. Suppose that ν = 2. Then

0.0625 ≤ γ2,ℓ < 0.0706.

Lemma 1. The ai in layer j ≥ 0 of the circuit of Theorem 3 is zero when the 2jν bits of c at the sequential

coordinates ((j, ν, i)) := (2jνi+ 1− 2jν, . . . , 2jνi) are equal to 1. Here in layer 0 we set ai := (c
i
<
ν
x).

8 The only exception is [18], due to statistical slack, but even there the bits of c are approximately uniformly random
so the remainder of our analysis still holds.
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Proof. We may split the sequence ((j, ν, i)) into two disjoint components

((j, ν, i)) = ((j − 1, ν, 2i− 1))⊕ ((j − 1, ν, 2i)),

which follows from the identities

2j−1ν(2i− 1) + 1− 2j−1ν = 2jνi+ 1− 2jν,

2j−1ν(2i− 1) + 1 = 2j−1ν(2i) + 1− 2j−1ν,

2j−1ν(2i) = 2jνi.

We prove the claim by induction. Specialising to j = 1 in this decomposition yields that the set of bits of c

corresponding to ((1, ν, i)) is {cν,2i−1, cν,2i}, which implies that c
2i−1
<
ν

x and c
2i
<
ν
x are zero, and hence so is

ai := [c
2i
<
ν
x] + [c

2i−1
<
ν

x] · [c 2i
=
ν
x]. For j > 1 the induction hypothesis implies that the a2i and a2i−1 of layer

j − 1 are zero, proving the claim.

Lemma 2. Let c be a uniformly random public value and [x]bit be a bitwise-shared value of bit-length ℓ, pick
a natural number ν ∈ N1 and consider the circuit of (5). If ℓν is a power of 2 then the expected number of
redundant multiplications is γν,ℓℓ.

If ℓν is not a power of 2, the precise result is slightly more complex but quite similar.

Proof. First let us count the number of multiplication gates in each layer of (5): it has log ℓν layers, and
the number of multiplication gates in the j-th layer is ℓ/2j−1ν. Only half of them can become redundant,
namely those corresponding to the ai computations, so that leaves ℓ/2jν gates in layer j. For convenience
let the 0-th layer denote the input c1, . . . , cν , which we also denote by ai.

Now consider the computation of ai in layer j ≥ 1. Its multiplication gate is redundant precisely when
the a2i−1 of the previous layer is zero, which by the previous lemma happens precisely when 2j−1ν bits of
c are equal to 1. This leaves ℓ− 2j−1ν bits freely. We can now compute the expected number of redundant
multiplications as

E(redundant mults) = 2−ℓ

log ℓν∑
i=1

ℓ

ν
2−i2ℓ−2i−1ν =

ℓ

ν

log ℓν∑
i=1

2−2i−1ν−i = γν,ℓℓ.

Thus we can improve the online complexity of the protocol described in Theorem 3 to:

Theorem 4. Let ℓ denote the bit-length and pick a natural number ν ∈ N1, and assume for simplicity that
ℓ/ν is a power of 2. The secure comparison [c < x] for a public value c and bitwise-shared value [x]bit can be
computed with the following average communication costs:

– The number of online rounds is log(ℓ/ν).
– The number of offline multiplications is (2ν − 1)ℓ/ν − ℓ.
– The number of online multiplications is 2ℓ/ν − γν,ℓℓ− log(ℓν)− 2.

So on average the total number of multiplications is: (2ν + 1)ℓ/ν − (γν,ℓ + 1)ℓ− log(ℓν)− 2.

As the value of γν,ℓ drops rapidly when ν increases, Table 6 shows that for ν = 5 the improvement in
online communication complexity is becoming negligible:
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Bit arity ν Number of rounds Offline PMult Online PMult Total PMult

1 L 0 1.68ℓ 1.68ℓ
2 L− 1 0.5ℓ 0.93ℓ 1.43ℓ
3 L− 1 1.33ℓ 0.64ℓ 1.98ℓ
4 L− 2 2.75ℓ 0.49ℓ 3.24ℓ
5 L− 2 5.2ℓ 0.4ℓ 5.6ℓ

Table 6: Average communication complexity of computing the secure comparison of a public value and a bitwise
shared value for various ν. Here ν denotes the number of bits to be compared simultaneously and the last three

columns denote the number of invocations of the ideal functionality FMult of multiplication.

Protocol BitLessThan

[c < x]←− P
logR,ν
BitLessThan

(
c, [x]ν-bit

)
1. The nodes locally compute: ([eqc,z

ν ], [ltc,zν ])← PnAryComps(c, [x]ν-bit).
2. Let Zeroes := {i ∈ {1, . . . , ⌈ℓ/ν⌉} : cν,i = 2ν − 1} and define ℓ′ := ⌈⌈ℓ/ν⌉/2⌉ = ⌈ℓ/2ν⌉. While ℓ′ > 1:

(a) In parallel, for j in 1, . . . , ⌊ℓ′/2⌋ the nodes compute [ẽqj ] ← PMult([eq2j ], [eq2j−1]) and for i in
1, . . . , ⌊ℓ′/2⌋:
– If 2i− 1 is not in Zeroes, they also compute

[l̃ti]← PMult([eq2i], [lt2i−1]).

– Otherwise, set [l̃ti] := 0.
(b) For i in 1, . . . , ⌊ℓ′/2⌋, the nodes rename:

[lti] := [lt2i] + [l̃ti] and [eqi] := [ẽqi].

(c) – If ℓ′ is even, the nodes set ℓ′ := ℓ′/2.
– If ℓ′ is odd, the nodes set ℓ′ := ⌈ℓ′/2⌉ and [eqℓ′ ] := [eq2ℓ′−1] and [ltℓ′ ] := [lt2ℓ′−1].

3. The nodes set [c < x] := [lt1].

Fig. 13: Protocol to compute a sharing of the comparison of a public value and bitwise shared value

Protocol LSB

[z1]←− P
logR,ν
LSB

(
JzK

)
1. The nodes compute a shifted decomposition (z + r, [r]ν-bit)← PShiftedBitDecomp(z, ν), and set c := z + r.
2. The nodes compute [w]← P

logR,ν
BitLessThan(c, [r]ν-bit).

3. The nodes locally compute the bit XOR [c1 ⊕ r1] and then compute [v] := [w] · [c1 ⊕ r1].
4. They locally compute

[z1] = [w] + [c1 ⊕ r1]− 2[v].

Fig. 14: Protocol to compute a sharing of the least significant bit

As noted earlier, if ℓ is not a power of 2 then the final multiplication can be added to the logarithmic
protocol P

logR,ν
BitLessThan, ultimately reducing one round of communication.
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A Information-theoretic MPC protocols

We briefly describe and summarise the performance of [2]. This honest majority MPC protocol presents a
minor improvement over [32]:

Traditionally, information-theoretically secure LSSS-based MPC protocols for an arbitrary number of
nodes were based on the so-called BGW protocol [11], which was later improved by [30]. For each multipli-
cation gate, this protocol requires each node to send a share to all other nodes. When the number of nodes
is not too small, the protocol of [25] is faster by instead requiring a node to send their shares only to a single
“king” node, which subsequently sends shares back. This protocol thus ends up making each node send ap-
proximately 2 elements online for each multiplication gate, and an additional 4 elements offline to construct
the necessary secret shared random numbers (when using superinvertible matrices [34]). By cleverly reusing
this randomness, the MPC protocol [32] brings the preprocessing cost down from 4 elements to only 2.

As is evident in this paper, efficient comparison protocols do not merely consist of addition and multi-
plication gates, but also rely heavily on reveal and public multiplication gates. The MPC protocol [2] also
uses “king” nodes for these gates, again resulting in 2 elements per node sent online per gate, and reuses the
trick of [32] of t-wise independent sharings so that public multiplications require only 1 element per node
preprocessed offline.

B One-round comparison protocol

The comparison protocol of [38, §II.B] (see also [20]) can be summarised as follows: given a secret shared
value [y], the nodes jointly compute and reveal some value yc0 − c1 for large but bounded secret integers
c0, c1 with |c1| ≪ |c0| ̸= 0, and then use the sign of this public value to locally compute a sharing of the
Boolean y < 0.

– They state their protocol has round complexity O(log n), but after moving (without affecting efficiency)
most of its components to preprocessing their protocol can be done with only 1 online public multipli-
cation (or rather, affine shift).

This public value yc0 − c1 leaks some information on y and thus one needs to estimate its statistical privacy
precisely. However, if one requires perfect correctness, then in order to determine whether y is strictly positive
or strictly negative the value |c1| needs to be less than the minimum value c0 can attain. If furthermore the
value zero is not ruled for y, then |c1| must be less than half this minimum. In conclusion, the effect of c1
on masking y is negligible, and thus the masking of y is essentially multiplicative. But it is well-known that
such masks are not very effective because the number of divisors of a random number are relatively low,
hence the additional bandwidth required would make it very inefficient relative to our 3-round comparison
protocol.
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C Comparison protocol with logarithmic complexity

As far as we know, there is only one protocol in the literature which computes a bitwise comparison with
complexity logarithmic in the number of bits ℓ:

– [40, gt(ℓ),log]: The basic idea of this protocol is to recursively check whether the ℓ/2 most significant bits of
two secret shared values of bit-length ℓ are different, until only the highest pair of bits in which they differ,
is left; comparing those then yields the result. Each of these ⌈log ℓ⌉ invocations has 5 communication
rounds, costing a shifted bit decomposition9 plus reveal, a bit equality protocol (which uses 2 reveals, a
multiplication and an invertible secret random value whose powers have been precomputed to the power
ℓ), and a multiplication.

Although the online complexity of this protocol is only logarithmic in the number of bits, its preprocessing
cost and high round complexity make it inefficient in most practical settings. Moreover the privacy of their
protocol is only statistical, thus using extra bandwidth. We can make the following improvements:

– Use a more efficient bit equality protocol PBitEq, see [2].
– The last multiplication in the protocol is only computed locally (in the honest majority setting), saving

an additional round in each iteration.

The number of rounds in the protocol is then almost halved from 5⌈log ℓ⌉ + 1 to 3⌈log ℓ⌉ + 1, and as a
consequence the online bandwidth is also reduced by 40% when using [2]. Only when the bit-length of the
values to be compared is very high (at least 128) and online bandwidth is more of a concern than latency
and offline bandwidth, and perfect security is required (ruling out doing bitwise comparisons over Z/2Z),
does this protocol seem to become potentially competitive.

9 An advantage here of the non-ITS setting is that fewer random bits have to be generated to preserve statistical
privacy.
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